Advertisement

Statistical model for collisions and recollisions of inertial particles in mixing flows

  • K. Gustavsson
  • B. MehligEmail author
Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract.

Finding a quantitative description of the rate of collisions between small particles suspended in mixing flows is a long-standing problem. Here we investigate the validity of a parameterisation of the collision rate for identical particles subject to Stokes force, based on results for relative velocities of heavy particles that were recently obtained within a statistical model for the dynamics of turbulent aerosols. This model represents the turbulent velocity fluctuations by Gaussian random functions. We find that the parameterisation gives quantitatively good results in the limit where the “ghost-particle approximation” applies. The collision rate is a sum of two contributions due to “caustics” and to “clustering”. Within the statistical model we compare the relative importance of these two collision mechanisms. The caustic formation rate is high when the particle inertia becomes large, and we find that caustics dominate the collision rate as soon as they form frequently. We compare the magnitude of the caustic contribution to the collision rate to the formation rate of caustics.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    B.J. Devenish, P. Bartello, J.-L. Brenguier, L.R. Collins, W.W. Grabowski, R.H.A. IJzermans, S.P. Malinowski, M.W. Reeks, J.C. Vassilicos, L.-P. Wang, Z. Warhaft, Q.J.R. Meteorol. Soc. 138, 1401 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    E. Bodenschatz, S.P. Malinowski, R.A. Shaw, F. Stratmann, Science 327, 970 (2010)CrossRefGoogle Scholar
  3. 3.
    P.J. Armitage, Astrophysics of Planet Formation (Cambridge University Press, Cambridge, UK) 2009Google Scholar
  4. 4.
    A. Johansen, J. Blum, H. Tanaka, C. Ormel, M. Bizzaro, H. Rickman, in Protostars and Planets VI (University of Arizona Press, 2014)Google Scholar
  5. 5.
    Y. Zhou, A.S. Wexler, L. Wang, Phys. Fluids 10, 1206 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    M. Voßkuhle, A. Pumir, E. Lévêque, M. Wilkinson, J. Fluid Mech. 749, 841 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    S. Sundaram, L.R. Collins, J. Fluid. Mech. 335, 75 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    G. Falkovich, A. Fouxon, G. Stepanov, Nature 419, 151 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    M. Wilkinson, B. Mehlig, V. Bezuglyy, Phys. Rev. Lett. 97, 048501 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    K. Gustavsson, B. Mehlig, Phys. Rev. E 84, 045304 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    K. Gustavsson, E. Meneguz, M. Reeks, B. Mehlig, New J. Phys. 14, 115017 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    K. Gustavsson, B. Mehlig, J. Turbul. 15, 34 (2014)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Bec, L. Biferale, M. Cencini, A. Lanotte, F. Toschi, J. Phys.: Conf. Ser. 333, 012003 (2011)ADSGoogle Scholar
  14. 14.
    V. Perrin, H. Jonker, Phys. Rev. E 92, 043022 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    K. Gustavsson, B. Mehlig, Adv. Phys. 65, 1 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    G. Falkovich, A. Pumir, J. Atmos. Sci. 64, 4497 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    Lauris Ducasse, Alain Pumir, Phys. Rev. E 80, 066312 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    B.K. Brunk, D.L. Koch, L.W. Lion, J. Fluid Mech. 364, 81 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    B. Andersson, K. Gustavsson, B. Mehlig, M. Wilkinson, EPL 80, 69001 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    K. Gustavsson, B. Mehlig, M. Wilkinson, New J. Phys. 10, 075014 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    M. Voßkuhle, A. Pumir, E. Lévêque, J. Phys.: Conf. Ser. 318, 052024 (2011)ADSGoogle Scholar
  22. 22.
    H.L. Pécseli, J. Trulsen, O. Fiksen, Progr. Oceanogr. 101, 14 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M. Smoluchowski, Z. Phys. Chem. XCII, 129 (1917)Google Scholar
  24. 24.
    P.G. Saffman, J.S. Turner, J. Fluid Mech. 1, 16 (1956)ADSCrossRefGoogle Scholar
  25. 25.
    J. Abrahamson, Chem. Eng. Sci. 30, 1371 (1975)CrossRefGoogle Scholar
  26. 26.
    J. Bec, A. Celani, M. Cencini, S. Musacchio, Phys. Fluids 17, 073301 (2005)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    J. Chun, D.L. Koch, S.L. Rani, A. Ahluwalia, L.R. Collins, J. Fluid Mech. 536, 219 (2005)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    K. Gustafsson, Inertial collisions in random flows, PhD thesis (University of Gothenburg, Sweden, 2011)Google Scholar
  29. 29.
    J. Bec, M. Cencini, M. Hillerbrand, K. Turitsyn, Physica D 237, 2037 (2008)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    K. Gustavsson, B. Mehlig, Phys. Rev. E 87, 023016 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    M. Wilkinson, B. Mehlig, Phys. Rev. E 68, 040101(R) (2003)ADSCrossRefGoogle Scholar
  32. 32.
    J. Bec, S. Musacchio, S.S. Ray, Phys. Rev. E 87, 063013 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of PhysicsGothenburg UniversityGothenburgSweden
  2. 2.Department of Physics and INFNUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations