Advertisement

Mode instabilities and dynamic patterns in a colony of self-propelled surfactant particles covering a thin liquid layer

  • Andrey Pototsky
  • Uwe ThieleEmail author
  • Holger Stark
Regular Article
Part of the following topical collections:
  1. Nonequilibrium Collective Dynamics in Condensed and Biological Matter

Abstract.

We consider a colony of point-like self-propelled surfactant particles (swimmers) without direct interactions that cover a thin liquid layer on a solid support. The particles predominantly swim normal to the free film surface with only a small component parallel to the film surface. The coupled dynamics of the swimmer density and film height profile is captured in a long-wave model allowing for diffusive and convective transport of the swimmers (including rotational diffusion). The dynamics of the film height profile is determined by i) the upward pushing force of the swimmers onto the liquid-gas interface, ii) the solutal Marangoni force due to gradients in the swimmer concentration, and iii) the rotational diffusion of the swimmers together with the in-plane active motion. After reviewing and extending the analysis of the linear stability of the uniform state, we analyse the fully nonlinear dynamic equations and show that point-like swimmers, which only interact via long-wave deformations of the liquid film, self-organise in highly regular (standing, travelling, and modulated waves) and various irregular patterns.

Graphical abstract

Keywords

Topical Issue: Nonequilibrium Collective Dynamics in Condensed and Biological Matter 

Supplementary material

10189_2016_278_MOESM1_ESM.mp4 (188 kb)
Supplementary material
10189_2016_278_MOESM2_ESM.mp4 (188 kb)
Supplementary material
10189_2016_278_MOESM3_ESM.mp4 (188 kb)
Supplementary material
10189_2016_278_MOESM4_ESM.mp4 (188 kb)
Supplementary material
10189_2016_278_MOESM5_ESM.mp4 (188 kb)
Supplementary material
10189_2016_278_MOESM6_ESM.pdf (95 kb)
Supplementary material

References

  1. 1.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)CrossRefADSGoogle Scholar
  2. 2.
    M. Marchetti, J. Joanny, S. Ramaswamy, T. Liverpool, J. Prost, M. Rao, R. Simha, Rev. Mod. Phys. 85, 1143 (2013)CrossRefADSGoogle Scholar
  3. 3.
    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)CrossRefADSGoogle Scholar
  4. 4.
    I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012)CrossRefADSGoogle Scholar
  5. 5.
    J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010)CrossRefADSGoogle Scholar
  6. 6.
    J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)CrossRefADSGoogle Scholar
  7. 7.
    S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13, 073021 (2011)CrossRefADSGoogle Scholar
  8. 8.
    I.H. Riedel, K. Kruse, J. Howard, Science 309, 300 (2005)CrossRefADSGoogle Scholar
  9. 9.
    C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J. Kessler, Phys. Rev. Lett. 93, 098103 (2004)CrossRefADSGoogle Scholar
  10. 10.
    E. Lushia, H. Wioland, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 111, 9733 (2005)CrossRefADSGoogle Scholar
  11. 11.
    A. Sokolov, I.S. Aranson, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 98, 158102 (2007)CrossRefADSGoogle Scholar
  12. 12.
    A. Sokolov, I.S. Aranson, Phys. Rev. Lett. 109, 248109 (2012)CrossRefADSGoogle Scholar
  13. 13.
    K.-A. Liu, L. I, Phys. Rev. E 86, 011924 (2012)CrossRefADSGoogle Scholar
  14. 14.
    A. Sokolov, R.E. Goldstein, F.I. Feldchtein, I.S. Aranson, Phys. Rev. E 80, 031903 (2009)CrossRefADSGoogle Scholar
  15. 15.
    H.H. Wensink, J. Dunkel, S. Heidenreich, K. Drescher, R.E. Goldstein, H. Löwen, J.M. Yeomans, Proc. Natl. Acad. Sci. U.S.A. 109, 14308 (2012)CrossRefADSGoogle Scholar
  16. 16.
    T. Ishikawa, N. Yoshida, H. Ueno, M. Wiedeman, Y. Imai, T. Yamaguchi, Phys. Rev. Lett. 107, 028102 (2011)CrossRefADSGoogle Scholar
  17. 17.
    C. Dombrowski, L. Cisneros, S. Chatkaew, R.E. Goldstein, J.O. Kessler, Phys. Rev. Lett. 93, 098103 (2004)CrossRefADSGoogle Scholar
  18. 18.
    J. Schwarz-Linek, C. Valeriani, A. Cacciuto, M.E. Cates, D. Marenduzzo, A.N. Morozov, W.C.K. Poon, Proc. Natl. Acad. Sci. U.S.A. 109, 4052 (2012)CrossRefGoogle Scholar
  19. 19.
    J. Dunkel, S. Heidenreich, K. Drescher, H.H. Wensink, M. Bär, R.E. Goldstein, Phys. Rev. Lett. 110, 228102 (2013)CrossRefADSGoogle Scholar
  20. 20.
    V. Schaller, C. Weber, C. Semmrich, E. Frey, A.R. Bausch, Nature 467, 73 (2010)CrossRefADSGoogle Scholar
  21. 21.
    T. Surrey, F. Nédélec, S. Leibler, E. Karsenti, Science 292, 1167 (2001)CrossRefADSGoogle Scholar
  22. 22.
    Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chate, K. Oiwa, Nature 483, 448 (2012)CrossRefADSGoogle Scholar
  23. 23.
    I. Derenyi, T. Vicsek, Phys. Rev. Lett. 75, 374 (1995)CrossRefADSGoogle Scholar
  24. 24.
    A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, D. Bartolo, Nature 503, 95 (2013)CrossRefADSGoogle Scholar
  25. 25.
    K.H. Nagai, Y. Sumino, R. Montagne, I.S. Aranson, H. Chaté, Phys. Rev. Lett. 114, 168001 (2015)CrossRefADSGoogle Scholar
  26. 26.
    R. Großmann, P. Romanczuk, M. Bär, L. Schimansky-Geier, Phys. Rev. Lett. 113, 258104 (2014)CrossRefADSGoogle Scholar
  27. 27.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)MathSciNetCrossRefADSGoogle Scholar
  28. 28.
    J. Bialke, H. Löwen, T. Speck, EPL 103, 30008 (2013)CrossRefADSGoogle Scholar
  29. 29.
    F. Peruani, A. Deutsch, M. Bär, Phys. Rev. E 74, 030904 (2006)CrossRefADSGoogle Scholar
  30. 30.
    A. Baskaran, M.C. Marchetti, Phys. Rev. E 77, 011920 (2008)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    S. van Teeffelen, H. Löwen, Phys. Rev. E 78, 020101(R) (2008)CrossRefADSGoogle Scholar
  32. 32.
    A. Zöttl, H. Stark, Phys. Rev. Lett. 112, 118101 (2014)CrossRefADSGoogle Scholar
  33. 33.
    M. Hennes, K. Wolff, H. Stark, Phys. Rev. Lett. 112, 238104 (2014)CrossRefADSGoogle Scholar
  34. 34.
    O. Pohl, H. Stark, Phys. Rev. Lett. 112, 238303 (2014)CrossRefADSGoogle Scholar
  35. 35.
    O. Pohl, H. Stark, Eur. Phys. J. E 38, 93 (2015)CrossRefGoogle Scholar
  36. 36.
    I.S. Aranson, A. Sokolov, J.O. Kessler, R.E. Goldstein, Phys. Rev. E 75, 040901 (2007)CrossRefADSGoogle Scholar
  37. 37.
    G. Subramanian, D.L. Koch, J. Fluid Mech. 632, 359 (2009)MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    U. Thiele, A.J. Archer, M. Plapp, Phys. Fluids 24, 102107 (2012)CrossRefADSGoogle Scholar
  39. 39.
    S. Alonso, A. Mikhailov, Phys. Rev. E 79, 061906 (2009)CrossRefADSGoogle Scholar
  40. 40.
    A. Pototsky, U. Thiele, H. Stark, Phys. Rev. E 90, 030401(R) (2014)CrossRefADSGoogle Scholar
  41. 41.
    A. Oron, S. Davis, S. Bankoff, Rev. Mod. Phys. 69, 931 (1997)CrossRefADSGoogle Scholar
  42. 42.
    L.W. Schwartz, D.E. Weidner, R.R. Eley, Langmuir 11, 3690 (1995)CrossRefGoogle Scholar
  43. 43.
    V. Garbin, J.C. Crocker, K.J. Stebe, Langmuir 28, 1663 (2012)CrossRefGoogle Scholar
  44. 44.
    D. Alizadehrad, T. Krüger, M. Engstler, H. Stark, PLoS Comput. Biol. 11, e1003967 (2015)CrossRefADSGoogle Scholar
  45. 45.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)CrossRefADSGoogle Scholar
  46. 46.
    L. Helden, R. Eichhorn, C. Bechinger, Soft Matter 11, 2379 (2015)CrossRefADSGoogle Scholar
  47. 47.
    T. Lee, M. Alarcon-Correa, C. Miksch, K. Hahn, J. Gibbs, P. Fischer, Nano Lett. 14, 2407 (2014)CrossRefADSGoogle Scholar
  48. 48.
    M. Enculescu, H. Stark, Phys. Rev. Lett. 107, 058301 (2011)CrossRefADSGoogle Scholar
  49. 49.
    K. Wolff, A. Hahn, H. Stark, Eur. Phys. J. E 36, 43 (2013)CrossRefGoogle Scholar
  50. 50.
    C.W. Gardiner, Handbook of Stochastic Methods (Springer-Verlag, Berlin Heidelberg, 2004)Google Scholar
  51. 51.
    A. Pototsky, H. Stark, EPL 98, 50004 (2012)CrossRefADSGoogle Scholar
  52. 52.
    E. Stellamanns, S. Uppaluri, A. Hochstetter, N. Heddergott, M. Engstler, T. Pfohl, Sci. Rep. 4, 6515 (2014)CrossRefADSGoogle Scholar
  53. 53.
    J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010)CrossRefADSGoogle Scholar
  54. 54.
    B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)ADSGoogle Scholar
  55. 55.
    R. Golestanian, Phys. Rev. Lett. 108, 038303 (2012)CrossRefADSGoogle Scholar
  56. 56.
    P. Beltrame, U. Thiele, SIAM J. Appl. Dyn. Syst. 9, 484 (2010)MathSciNetCrossRefADSGoogle Scholar
  57. 57.
    R. Grossmann, P. Romanczuk, M. Bar, L. Schimansky-Geier, Eur. Phys. JST 224, 1325 (2015)Google Scholar
  58. 58.
    F. Ziebert, Ph.D. thesis, Universität Bayreuth (2006)Google Scholar
  59. 59.
    F. Ziebert, W. Zimmermann, Eur. Phys. J. E 18, 41 (2005)CrossRefGoogle Scholar
  60. 60.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)CrossRefADSGoogle Scholar
  61. 61.
    J. Dunkel, S. Heidenreich, M. Bär, R.E. Goldstein, New J. Phys. 15, 045016 (2013)CrossRefADSGoogle Scholar
  62. 62.
    M. Bestehorn, Hydrodynamik und Strukturbildung: Mit einer kurzen Einfuhrung in die Kontinuumsmechanik (Springer-Lehrbuch) (German Edition) (Springer, 2006), ISBN 3540337962Google Scholar
  63. 63.
    R.A. Meyers, Encyclopedia of Complexity and Systems Science, Vol. 4 (Springer-Verlag, New York, 2009) p. 3611, ISBN 978-0-387-30440-3Google Scholar
  64. 64.
    Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, 3rd ed. (Springer, New York, 2010)Google Scholar
  65. 65.
    H.A. Dijkstra, F.W. Wubs, A.K. Cliffe, E. Doedel, I.F. Dragomirescu, B. Eckhardt, A.Y. Gelfgat, A. Hazel, V. Lucarini, A.G. Salinger et al., Commun. Comput. Phys. 15, 1 (2014)MathSciNetGoogle Scholar
  66. 66.
    K. Tunstrøm, Y. Katz, C.C. Ioannou, C. Huepe, M.J. Lutz, I.D. Couzin, PLoS Comput. Biol. 9, 1 (2013)CrossRefGoogle Scholar
  67. 67.
    J.V. Small, Th. Stradal, E. Vignal, K. Rottner, Trends Cell Biol. 12, 112 (2002)CrossRefGoogle Scholar
  68. 68.
    H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, F. Raynaud, Eur. Phys. J. B 64, 451 (2008)CrossRefADSGoogle Scholar
  69. 69.
    A. Gopinath, M.F. Hagan, M.C. Marchetti, A. Baskaran, Phys. Rev. E 85, 061903 (2012)CrossRefADSGoogle Scholar
  70. 70.
    S. Mishra, A. Baskaran, M.C. Marchetti, Phys. Rev. E 81, 061916 (2010)CrossRefADSGoogle Scholar
  71. 71.
    T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012)CrossRefADSGoogle Scholar
  72. 72.
    Y. Kuznetsov, Elements of Applied Bifurcation Theory (Springer-Verlag, New York, 2004)Google Scholar
  73. 73.
    P.C. Matthews, S.M. Cox, Nonlinearity 13, 1293 (2000)MathSciNetCrossRefADSGoogle Scholar
  74. 74.
    S.M. Cox, P.C. Matthews, Physica D 175, 196 (2003)MathSciNetCrossRefADSGoogle Scholar
  75. 75.
    D. Winterbottom, P. Matthews, S. Cox, Nonlinearity 18, 1031 (2005)MathSciNetCrossRefADSGoogle Scholar
  76. 76.
    U.M.B. Marconi, P. Tarazona, J. Chem. Phys. 110, 8032 (1999)CrossRefADSGoogle Scholar
  77. 77.
    A.J. Archer, R. Evans, J. Chem. Phys. 121, 4246 (2004)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of Science Engineering and TechnologySwinburne University of TechnologyHawthorn, VictoriaAustralia
  2. 2.Institut für Theoretische PhysikWestfälische Wilhelms-Universität MünsterMünsterGermany
  3. 3.Center of Nonlinear Science (CeNoS)Westfälische Wilhelms Universität MünsterMünsterGermany
  4. 4.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations