Collective dynamics of diffusiophoretic motors on a filament

Regular Article
Part of the following topical collections:
  1. Nonequilibrium Collective Dynamics in Condensed and Biological Matter


A variety of uses has been proposed for synthetic chemically powered nanomotors that exploit their autonomous directed motion. The collective dynamics of these and other active particles display features that differ from their equilibrium analogs. We investigate the collective dynamics of chemically powered diffusiophoretic motors attached to a filament. Rotational Brownian motion is reduced substantially when a motor is attached to a filament and this improves motor performance. When many motors are attached to the filament, structural and dynamical correlations that may extend over long distances arise. While some features of these correlations are due to packing on the filament, there are nonequilibrium effects that are due to the local concentration gradients of reactive species produced by all motors. As the motor density on the filament increases beyond a critical value, the average motor velocity projected along motor internuclear axis switches from forward to backward directions. Knowledge of the collective dynamics of motors on filaments should prove useful when designing ensembles of synthetic motors to perform tasks such as cargo transport involving delivery of material to specific regions in complex media.

Graphical abstract


Topical Issue: Nonequilibrium Collective Dynamics in Condensed and Biological Matter 

Supplementary material

10189_2016_263_MOESM1_ESM.mp4 (2.6 mb)
Supplementary material
10189_2016_263_MOESM2_ESM.mp4 (3.6 mb)
Supplementary material
10189_2016_263_MOESM3_ESM.mp4 (4.1 mb)
Supplementary material


  1. 1.
    M.E. Cates, J. Tailleur, EPL 101, 20010 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    S. Saha, R. Golestanian, S. Ramaswamy, Phys. Rev. E 89, 062316 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    T. Speck, A.M. Menzel, J. Bialké, H. Löwen, J. Chem. Phys. 142, 224109 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    W. Wang, W. Duan, S. Ahmed, T.E. Mallouk, A. Sen, Nano Today A 8, 531 (2013)CrossRefGoogle Scholar
  7. 7.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Livepool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    J. Bialké, T. Speck, H. Löwen, J. Non-Cryst. Solids 407, 367 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    G.D. Magistris, D. Marenduzzo, Physica A 418, 65 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    V. Yadav, W. Duan, P.J. Butler, A. Sen, Annu. Rev. Biophys. 44, 77 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056691 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Andreas Zöttl, Holger Stark, arXiv:1601.06643 [cond-mat.soft]
  13. 13.
    B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, J.D. Watson, Molecular Biology of the Cell, 3rd edition (Garland Science, 2002)Google Scholar
  14. 14.
    R.A.L. Jones, Soft Machines: Nanotechnology and Life (Oxford University Press, Oxford, 2004)Google Scholar
  15. 15.
    B. Alberts, Cell 92, 291 (1998)CrossRefGoogle Scholar
  16. 16.
    R. Kapral, J. Chem. Phys. 138, 020901 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    W. Gao, A. Pei, X. Feng, C. Hennessy, J. Wang, J. Am. Chem. Soc. 135, 998 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Ibele, T.E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 48, 3308 (2009)CrossRefGoogle Scholar
  20. 20.
    J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    I. Buttinoni, J. Bialké, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    H.-Y. Chen, K.-T. Leung, Phys. Rev. E 73, 056107 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    K.-T. Leung, H.-Y. Chen, Int. J. Mod. Phys. B 21, 3954 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    A. Zöttl, H. Stark, Phys. Rev. Lett. 112, 118101 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    M. Hennes, K. Wolff, H. Stark, Phys. Rev. Lett. 112, 238104 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    O. Pohl, H. Stark, Phys. Rev. Lett. 112, 238303 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    J.L. Anderson, Ann. Rev. Fluid Mech. 21, 61 (1989)ADSCrossRefGoogle Scholar
  28. 28.
    R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    G. Rückner, R. Kapral, Phys. Rev. Lett. 98, 150603 (2007)CrossRefGoogle Scholar
  30. 30.
    M.-J. Huang, R. Kapral, J. Chem. Phys. 142, 245102 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    M.-J. Huang, R. Kapral, A.S. Mikhailov, H.-Y. Chen, J. Chem. Phys. 138, 195101 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)ADSCrossRefGoogle Scholar
  33. 33.
    A. Malevanets, R. Kapral, J. Chem. Phys. 112, 72609 (2000)CrossRefGoogle Scholar
  34. 34.
    R. Kapral, Adv. Chem. Phys. 140, 89 (2008)CrossRefGoogle Scholar
  35. 35.
    G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009)Google Scholar
  36. 36.
    K. Rohlf, S. Fraser, R. Kapral, Computs. Phys. Commun. 179, 132 (2008)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    C. Loken, D. Gruner, L. Groer, R. Peltier, N. Bunn, M. Craig, T. Henriques, J. Dempsey, C.-H. Yu, J. Chen, L.J. Dursi, J. Chong, S. Northrup, J. Pinto, N. Knecht, R. Van Zon, J. Phys.: Conf. Ser. 256, 012026 (2010)ADSGoogle Scholar
  38. 38.
    H. Noguchi, N. Kikuchi, G. Gompper, EPL 78, 10005 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    T. Ihle, D.M. Kroll, Phys. Rev. E 63, 020201 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    T. Ihle, D.M. Kroll, Phys. Rev. E 67, 066705 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Chemical Physics Theory Group, Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations