Advertisement

Statistics of the dissipated energy in driven diffusive systems

  • A. LasantaEmail author
  • Pablo I. Hurtado
  • A. Prados
Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract.

Understanding the physics of non-equilibrium systems remains one of the major open questions in statistical physics. This problem can be partially handled by investigating macroscopic fluctuations of key magnitudes that characterise the non-equilibrium behaviour of the system of interest; their statistics, associated structures and microscopic origin. During the last years, some new general and powerful methods have appeared to delve into fluctuating behaviour that have drastically changed the way to address this problem in the realm of diffusive systems: macroscopic fluctuation theory (MFT) and a set of advanced computational techniques that make it possible to measure the probability of rare events. Notwithstanding, a satisfactory theory is still lacking in a particular case of intrinsically non-equilibrium systems, namely those in which energy is not conserved but dissipated continuously in the bulk of the system (e.g. granular media). In this work, we put forward the dissipated energy as a relevant quantity in this case and analyse in a pedagogical way its fluctuations, by making use of a suitable generalisation of macroscopic fluctuation theory to driven dissipative media.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, Phys. Rev. Lett. 87, 040601 (2001)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, Phys. Rev. Lett. 94, 030601 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, J. Stat. Mech. P07014, (2007)Google Scholar
  4. 4.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, J. Stat. Phys. 135, 857 (2009)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, C. Landim, Rev. Mod. Phys. 87, 593 (2015)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Derrida, J. Stat. Mech. P07023, (2007)Google Scholar
  7. 7.
    R.S. Ellis, Entropy, Large Deviations and Statistical Mechanics (Springer, New York, 1985)Google Scholar
  8. 8.
    H. Touchette, Phys. Rep. 478, 1 (2009)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    T. Pöschel, S. Luding (Editors), Granular Gases, Lecture Notes in Physics, Vol. 564 (Springer-Verlag, Berlin 2001)Google Scholar
  10. 10.
    A. Prados, A. Lasanta, P.I. Hurtado, Phys. Rev. Lett. 107, 140601 (2011)ADSCrossRefGoogle Scholar
  11. 11.
    P.I. Hurtado, A. Lasanta, A. Prados, Phys. Rev. E 88, 022110 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    A. Prados, A. Lasanta, P.I. Hurtado, Phys. Rev. E 86, 031134 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    C. Kipnis, C. Marchioro, E. Presutti, J. Stat. Phys. 27, 65 (1982)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Lasanta, A. Manacorda, A. Prados, A. Puglisi, New J. Phys. 17, 083039 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    C. Lanczos, The Variational Principles of Mechanics (Dover, New York, 1986)Google Scholar
  16. 16.
    J. Javier Brey, M.J. Ruiz-Montero, F. Moreno, Phys. Rev. E 63, 061305 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    P. Visco, A. Puglisi, A. Barrat, F. van Wijland, E. Trizac, Eur. Phys. J. B 63, 377 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    D.R.M. Williams, F.C. MacKintosh, Phys. Rev. E 54, R9 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    T.P.C. van Noije, M.H. Ernst, Granular Matter 1, 57 (1996)CrossRefGoogle Scholar
  20. 20.
    T.P.C. van Noije, M.H. Ernst, E. Trizac, I. Pagonabarraga, Phys. Rev. E 63, 4326 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    A. Puglisi, V. Loreto, U. Marini Bettolo Marconi, A. Petri, A. Vulpiani, Phys. Rev. Lett. 81, 3848 (1998)ADSCrossRefGoogle Scholar
  22. 22.
    M.I. García de Soria, P. Maynar, E. Trizac, Phys. Rev. E 85, 051301 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M.I. García de Soria, P. Maynar, E. Trizac, Phys. Rev. E 87, 022201 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    A. Prados, E. Trizac, Phys. Rev. Lett. 112, 198001 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    T. Bodineau, B. Derrida, Phys. Rev. Lett. 92, 180601 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    P.I. Hurtado, P.L. Garrido, Phys. Rev. Lett. 102, 250601 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    P.I. Hurtado, P.L. Garrido, Phys. Rev. E 81, 041102 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    P.I. Hurtado, C. Pérez-Espigares, J.J. del Pozo, P.L. Garrido, Proc. Natl. Acad. Sci. U.S.A. 108, 7704 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    T. Bodineau, B. Derrida, Phys. Rev. E 72, 066110 (2005)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    P.I. Hurtado, P.L. Garrido, Phys. Rev. Lett. 107, 180601 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    C.P. Espigares, P.L. Garrido, P.I. Hurtado, Phys. Rev. E 87, 032115 (2013)ADSCrossRefGoogle Scholar
  32. 32.
    P.I. Hurtado, C. Pérez-Espigares, J.J. del Pozo, P.L. Garrido, J. Stat. Phys. 154, 214 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    I.M. Gelfand, S.V. Fomin, Calculus of Variations (Dover, New York, 2000)Google Scholar
  34. 34.
    J.J. Brey, M.J. Ruiz-Montero, F. Moreno, Phys. Rev. E 62, 5339 (2000)ADSCrossRefGoogle Scholar
  35. 35.
    G. Gallavotti, E.G.D. Cohen, Phys. Rev. Lett. 74, 2694 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    J.L. Lebowitz, H. Spohn, J. Stat. Phys. 95, 333 (1999)ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    A. Puglisi et al., Phys. Rev. Lett. 95, 110202 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    W.H. Press, S.A. Teukolsky, T. Vetterling, B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd Edition (Cambridge University Press, New York, 2007)Google Scholar
  39. 39.
    P. Grassberger, Comp. Phys. Com. 147, 64 (2002)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    C. Giardinà, J. Kurchan, L. Peliti, Phys. Rev. Lett. 96, 120603 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    V. Lecomte, J. Tailleur, J. Stat. Mech. P03004, (2007)Google Scholar
  42. 42.
    V. Lecomte, J. Tailleur, AIP Conf. Proc. 1091, 212 (2009)ADSGoogle Scholar
  43. 43.
    C. Giardin, J. Kurchan, V. Lecomte, J. Tailleur, J. Stat. Phys. 145, 787 (2011)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    H.J. Harris, G.M. Schütz, J. Stat. Mech. P07020, (2007)Google Scholar
  45. 45.
    G.M. Schütz, in Phase Transitions and Critical Phenomena, Vol. 19, edited by C. Domb, J.L. Lebowitz (Academic press, London, 2001)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.CNR-ISC and Dipartimento di FisicaUniversità La SapienzaRomeItaly
  2. 2.Instituto Carlos I de Física Teórica y ComputacionalUniversidad de GranadaGranadaSpain
  3. 3.Departamento de Electromagnetismo y Física de la MateriaUniversidad de GranadaGranadaSpain
  4. 4.Física TeóricaUniversidad de SevillaSevillaSpain

Personalised recommendations