Advertisement

Phase and precession evolution in the Burgers equation

  • Michele Buzzicotti
  • Brendan P. Murray
  • Luca Biferale
  • Miguel D. BustamanteEmail author
Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract.

We present a phenomenological study of the phase dynamics of the one-dimensional stochastically forced Burgers equation, and of the same equation under a Fourier mode reduction on a fractal set. We study the connection between coherent structures in real space and the evolution of triads in Fourier space. Concerning the one-dimensional case, we find that triad phases show alignments and synchronisations that favour energy fluxes towards small scales --a direct cascade. In addition, strongly dissipative real-space structures are associated with entangled correlations amongst the phase precession frequencies and the amplitude evolution of Fourier triads. As a result, triad precession frequencies show a non-Gaussian distribution with multiple peaks and fat tails, and there is a significant correlation between triad precession frequencies and amplitude growth. Links with dynamical systems approach are briefly discussed, such as the role of unstable critical points in state space. On the other hand, by reducing the fractal dimension D of the underlying Fourier set, we observe: i) a tendency toward a more Gaussian statistics, ii) a loss of alignment of triad phases leading to a depletion of the energy flux, and iii) the simultaneous reduction of the correlation between the growth of Fourier mode amplitudes and the precession frequencies of triad phases.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 1994)Google Scholar
  2. 2.
    M. Cencini, F. Cecconi, M. Vulpiani, Chaos: From Simple Models to Complex Systems. Series on Advances in Statistical Mechanics, Vol. 17 (World Scientific, 2010)Google Scholar
  3. 3.
    H.F. Weinberger, A First Course in Partial Differential Equations With Complex Variables and Transform Methods (Dover Publications, Inc., 1965)Google Scholar
  4. 4.
    J. Bec, K. Khanin, Phys. Rep. 447, 1 (2007)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Gerald Beresford Whitham Linear and Nonlinear Waves, Vol. 42 (John Wiley & Sons, 2011)Google Scholar
  6. 6.
    A.L. Barabási, H.E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, 1995)Google Scholar
  7. 7.
    E. Hopf, Commun. Pure Appl. Math. 3, 201 (1950)MathSciNetCrossRefGoogle Scholar
  8. 8.
    J.D. Cole, Q. Appl. Math. 9, 225 (1951)Google Scholar
  9. 9.
    Ya.B. Zeldovich, Astron. Astrophys. 5, 84 (1970)ADSGoogle Scholar
  10. 10.
    S.N. Gurbatov, A.I. Saichev, S.F. Shandarin, Month. Not. R. Astron. Soc. 236, 385 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    Z.S. She, E. Aurell, U. Frisch, Commun. Math. Phys. 148, 623 (1992)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    M. Vergassola, B. Dubrulle, U. Frisch, A. Noullez, Astron. Astrophys. 289, 325 (1994)ADSGoogle Scholar
  13. 13.
    E. Aurell, U. Frisch, A. Noullez, M. Blank, J. Stat. Phys. 88, 1151 (1997)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    R. Benzi, L. Biferale, R. Fisher, D.Q. Lamb, F. Toschi, J. Fluid Mech. 653, 221 (2010)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    L. Biferale, G. Boffetta, A. Celani, A.S. Lanotte, F. Toschi, Phys. Fluids 17, 021701 (2005)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    A.S. Lanotte, L. Biferale, G. Boffetta, F. Toschi, J. Turbul. 14, 34 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    L. Biferale, G. Boffetta, A. Celani, B. Devenish, A. Lanotte, F. Toschi, Phys. Rev. Lett. 93, 064502 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    W. Woyczyski, Burgers-KPZ Turbulence: Gottingen Lectures (Springer-Verlag, New York, 1998)Google Scholar
  19. 19.
    M.D. Bustamante, Physica D 240, 1092 (2011)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    U. Frisch, Turbulence: The Legacy of AN Kolmogorov (Cambridge University Press, 1995)Google Scholar
  21. 21.
    S.B. Pope, Turbulent Flows (Cambridge University Press, 2000)Google Scholar
  22. 22.
    M.D. Bustamante, B. Quinn, D. Lucas, Phys. Rev. Lett. 113, 084502 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M. Buzzicotti, L. Biferale, U. Frisch, S.S. Ray, arXiv:1601.03697 (2016)
  24. 24.
    R.H. Kraichnan, Phys. Fluids (1958-1988) 10, 1417 (1967)CrossRefGoogle Scholar
  25. 25.
    R.H. Kraichnan, J. Fluid Mech. 47, 525 (1971)ADSCrossRefGoogle Scholar
  26. 26.
    H.A. Rose, P.L. Sulem, J. Phys. (Paris) 39, 441 (1978)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Koji Ohkitani, Shigeo Kida, Physics Fluids A: Fluid Dyn. (1989-1993) 4, 794 (1992)CrossRefGoogle Scholar
  28. 28.
    U. Frisch, A. Pomyalov, I. Procaccia, S.S. Ray, Phys. Rev. Lett. 108, 074501 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    S.S. Ray, Pramana J. Phys. 84, 395 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    A.S. Lanotte, R. Benzi, S. Malapaka, F. Toschi, L. Biferale, Phys Rev. Lett. 115, 264502 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    E.W. Montroll, G.H. Weiss, J. Math. Phys. 6, 167 (1965)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michele Buzzicotti
    • 1
  • Brendan P. Murray
    • 2
  • Luca Biferale
    • 1
  • Miguel D. Bustamante
    • 2
    Email author
  1. 1.Department of Physics and INFNUniversity of Rome “Tor Vergata”RomeItaly
  2. 2.Complex and Adaptive Systems Laboratory, School of Mathematics and StatisticsUniversity College DublinDublinIreland

Personalised recommendations