On dewetting of thin films due to crystallization (crystallization dewetting)

Regular Article

Abstract.

Drying and crystallization of a thin liquid film of an ionic or a similar solution can cause dewetting in the resulting thin solid film. This paper aims at investigating this type of dewetting, herein termed “crystallization dewetting”, using PbI2 dissolved in organic solvents as the model solution. PbI2 solid films are usually used in X-ray detection and lead halide perovskite solar cells. In this work, PbI2 films are fabricated using spin coating and the effect of major parameters influencing the crystallization dewetting, including the type of the solvent, solution concentration, drying temperature, spin speed, as well as imposed vibration on the substrate are studied on dewetting, surface profile and coverage, using confocal scanning laser microscopy. Simplified hydrodynamic governing equations of crystallization in thin films are presented and using a mathematical representation of the process, it is phenomenologically demonstrated that crystallization dewetting occurs due to the absorption and consumption of the solution surrounding a growing crystal. Among the results, it is found that a low spin speed (high thickness), a high solution concentration and a low drying temperature promote crystal growth, and therefore crystallization dewetting. It is also shown that imposed vibration on the substrate can affect the crystal size and crystallization dewetting.

Graphical abstract

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

References

  1. 1.
    K. Jacobs, R. Seemann, S. Herminghaus, Stability and dewetting of thin liquid film, arXiv:0805.4336 [cond-mat.soft] (2008)
  2. 2.
    B. Saramago, Curr. Opin. Colloid Interface Sci. 15, 330 (2010)CrossRefGoogle Scholar
  3. 3.
    L. Xue, Y. Han, Progr. Mater. Sci. 57, 947 (2012)CrossRefGoogle Scholar
  4. 4.
    C.V. Thompson, Annu. Rev. Mater. Res. 42, 399 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M. Ramanathan, S.B. Darling, Progr. Polymer Sci. 36, 793 (2011)CrossRefGoogle Scholar
  6. 6.
    M. Ma, Z. He, J. Yang, F. Chen, K. Wang, O. Zhang, H. Deng, Q. Fu, Langmuir 27, 13072 (2011)CrossRefGoogle Scholar
  7. 7.
    G. Reiter, G. Castelein, P. Hoerner, G. Riess, J.-U. Sommer, G. Floudas, Eur. Phys. J. E 2, 319 (2000)CrossRefGoogle Scholar
  8. 8.
    G. Reiter, J-U. Sommer, J. Chem. Phys. 112, 4376 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    M.V. Massa, K. Dalnoki-Veress, J.A. Forrest, Eur. Phys. J. E 11, 191 (2003)CrossRefGoogle Scholar
  10. 10.
    K.L. Beers, J.F. Douglas, E.J. Amis, A. Karim, Langmuir 19, 3935 (2003)CrossRefGoogle Scholar
  11. 11.
    M. Asada, N. Jiang, L. Sendogdular, J. Sokolov, M.K. Endoh, T. Koga, M. Fukuto, L. Yang, B. Akgun, M. Dimitrioug, S. Satijag, Soft Matter 10, 6392 (2014)CrossRefGoogle Scholar
  12. 12.
    F. Zhang, G. Baralia, A. Boborodea, C. Bailly, B. Nysten, A.M. Jonas, Langmuir 21, 7427 (2005)CrossRefGoogle Scholar
  13. 13.
    B.C. Okerberg, B.C. Berry, T.R. Garvey, J.F. Douglas, A. Karim, C.L. Soles, Soft Matter 5, 562 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    Z.H. Du, T.S. Zhang, M.M. Zhu, J. Ma, J. Mater. Res. 24, 1576 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    A. Aliane, M. Benwadih, B. Bouthinon, R. Coppard, F. Domingues-Dos Santos, A. Daami, Organic Electron. 25, 92 (2015)CrossRefGoogle Scholar
  16. 16.
    J. López-García, J. Montero, C. Maffiotte, C. Guillén, J. Herrero, J. Alloys Comp. 648, 104 (2015)CrossRefGoogle Scholar
  17. 17.
    R. Svoboda, J. Gutwirth, J. Málek, T. Wágner, Thin Solid Films 571, 121 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    M. Mohri, M. Nili-Ahmadabadi, V.S.K. Chakravadhanula, Mater. Charact. 103, 75 (2015)CrossRefGoogle Scholar
  19. 19.
    A. Fraczyk, Techn. Sci. 14, 93 (2011)Google Scholar
  20. 20.
    M.K. Chaudhury, A. Chakrabarti, A. Ghatak, Eur. Phys. J. E 38, 82 (2015)CrossRefGoogle Scholar
  21. 21.
    F. Zabihi, M. Eslamian, J. Coat. Technol. Res. 12, 711 (2015)CrossRefGoogle Scholar
  22. 22.
    M. Habibi, M. Eslamian, F. Soltani-Kurdshuli, F. Zabihi, J. Coat. Technol. Res. 13, 211 (2016)CrossRefGoogle Scholar
  23. 23.
    F. Zabihi, M. Eslamian, J. Coat. Technol. Res. 12, 489 (2015)CrossRefGoogle Scholar
  24. 24.
    F. Zabihi, M.R. Ahmadian-Yazdi, M. Eslamian, Nanoscale Res. Lett. 11, 71 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499, 316 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, Y. Zhou, A. Gray-Weale, J. Etheridge, C.R. McNeill, R.A. Caruso, U. Bach, L. Spiccia, Y.-B. Cheng, Nano Energy 10, 10 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Razza, F. Di Giacomo, F. Matteocci, L. Cinà, A.L. Palma, S. Casaluci, P. Cameron, A. D’Epifanio, S. Licoccia, A. Reale, T.M. Brown, A. Di Carlo, J. Power Sources 277, 286 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    X. Zhu, H. Sun, D. Yang, J. Yang, X. Li, X. Gao, J. Mater. Sci.: Mater. Electron. 25, 3337 (2014)Google Scholar
  29. 29.
    H. Sun, X. Zhu, D. Yang, J. Yang, X. Gao, X. Li, J. Crystal Growth 405, 29 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    Y. He, S. Zhu, B. Zhao, Y. Jin, Z. He, B. Chen, J. Crystal Growth 300, 448 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    F. Zabihi, Y. Xie, S. Gao, M. Eslamian, Appl. Surf. Sci. 338, 163 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    Y. Xie, S. Gao, M. Eslamian, Coatings 5, 488 (2015)CrossRefGoogle Scholar
  33. 33.
    M. Shkir, H. Abbas, Z.R. Siddhartha Khan, J. Phys. Chem. Solids 73, 1309 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    M. Eslamian, F. Zabihi, Nanoscale Res. Lett. 10, 462 (2015)ADSCrossRefGoogle Scholar
  35. 35.
    Q. Wang, M. Eslamian, Ultrasonics 67, 55 (2016)CrossRefGoogle Scholar
  36. 36.
    A.V. Oppenheim, R.W. Schafer, J.R. Buck, Discrete-time signal processing (Prentice Hall, 1999) pp. 468--471Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mehran Habibi
    • 1
  • Amin Rahimzadeh
    • 1
  • Morteza Eslamian
    • 1
  1. 1.University of Michigan - Shanghai Jiao Tong University Joint InstituteShanghaiChina

Personalised recommendations