Heat and mass transfer models to understand the drying mechanisms of a porous substrate

  • Joel SongokEmail author
  • Douglas W. Bousfield
  • Patrick A.C. Gane
  • Martti Toivakka
Regular Article
Part of the following topical collections:
  1. Wetting and Drying: Physics and Pattern Formation


While drying of paper and paper coatings is expensive, with significant energy requirements, the rate controlling mechanisms are not currently fully understood. Two two-dimensional models are used as a first approximation to predict the heat transfer during hot air drying and to evaluate the role of various parameters on the drying rates of porous coatings. The models help determine the structural limiting factors during the drying process, while applying for the first time the recently known values of coating thermal diffusivity. The results indicate that the thermal conductivity of the coating structure is not the controlling factor, but the drying rate is rather determined by the thermal transfer process at the structure surface. This underlines the need for ensuring an efficient thermal transfer from hot air to coating surface during drying, before considering further measures to increase the thermal conductivity of porous coatings.

Graphical abstract


Topical Issue: Wetting and Drying: Physics and Pattern Formation 


  1. 1.
    C.M. McLoughlin, W.A.M. McMinn, T.R.A. Magee, Food Bioprod. Process 78, 90 (2000)CrossRefGoogle Scholar
  2. 2.
    D. Sun, Y. Zhang, J. Coat. Technol. Res. 9, 151 (2012)CrossRefGoogle Scholar
  3. 3.
    A.S. Mujumdar, Handbook of Industrial Drying, 3rd edition (CRC Press, Florida, 2006)Google Scholar
  4. 4.
    B. Bates, State-of-the-art developments to save energy in coating drying, PaperCon (2010)Google Scholar
  5. 5.
    E. Frank, Dtsch. Drucker. 32, 2 (1996)Google Scholar
  6. 6.
    W.L. McCabe, J.C. Smith, P. Harriott, Drying of solids, in Unit Operations of Chemical Engineering, edited by B.J. Clack, E. Casellano (McGraw-Hill Inc., USA, 1993)Google Scholar
  7. 7.
    A. Avci, M. Can, A.B. Etemoğlu, Appl. Therm. Eng. 21, 465 (2001)CrossRefGoogle Scholar
  8. 8.
    S.X. Pan, H.T. Davis, L.E. Scriven, Tappi J. 1, 37 (1995)Google Scholar
  9. 9.
    A. Avci, M. Can, Appl. Therm. Eng. 19, 641 (1999)CrossRefGoogle Scholar
  10. 10.
    B.P.E. Dano, J.A. Liburdy, K. Kanokjaruvijit, Int. J. Heat Mass Trans. 48, 691 (2005)CrossRefGoogle Scholar
  11. 11.
    P. Heikkilä, N. Milosavljevic, Drying Technol. 20, 211 (2002)CrossRefGoogle Scholar
  12. 12.
    P. Heikkilä, N. Milosavljevic, Proceedings of the 13th International Drying Symposium (IDS2002), (Beijing, 2002), pp. 1809-1817Google Scholar
  13. 13.
    H. Martin, Heat and mass transfer between impinging gas jets and solid surfaces (Academic Press, New York, 1977)Google Scholar
  14. 14.
    A.G. Yiotis, I.N. Tsimpanogiannis, A.K. Stubos, Y.C. Yortsos, J. Colloid Interface Sci. 297, 738 (2006)CrossRefGoogle Scholar
  15. 15.
    J.B. Laurindo, M. Prat, Chem. Eng. Sci. 51, 5171 (1996)CrossRefGoogle Scholar
  16. 16.
    S.C. Nowicki, H.T. Davies, L.E. Scriven, Drying Technol. 10, 925 (1992)CrossRefGoogle Scholar
  17. 17.
    M. Prat, Int. J. Heat Mass Transfer 59, 1455 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Prat, Int. J. Multiphase Flow 21, 875 (1995)CrossRefzbMATHGoogle Scholar
  19. 19.
    M. Prat, Int. J. Multiphase Flow 19, 691 (1993)CrossRefzbMATHGoogle Scholar
  20. 20.
    A.G. Yiotis, A.K. Boudouvis, A.K. Stubos, I.N. Tsimpanogiannis, Y.C. Yortsos, AIChE J. 50, 2721 (2004)CrossRefGoogle Scholar
  21. 21.
    H. Wang, S.V. Garimella, J.Y. Murthy, Int. J. Heat Mass Transfer 50, 3933 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    R. Ranjan, J.Y. Murthy, S.V. Garimella, Int. J. Heat Mass Transfer 54, 169 (2011)CrossRefzbMATHGoogle Scholar
  23. 23.
    J.B. Laurindo, M. Prat, Chem. Eng. Sci. 53, 2257 (1998)CrossRefGoogle Scholar
  24. 24.
    A.G. Yiotis, I.N. Tsimpanogiannis, A.K. Stubos, Water Resour. Res. 43, 1 (2007)CrossRefGoogle Scholar
  25. 25.
    C. Buffone, K. Sefiane, Int. J. Multiphase Flow 30, 1071 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    P. Gerstner, C.J. Ridgway, J. Paltakari, P.A.C. Gane, Proceedings of the 14th Fundamental Research Symposium (Oxford, UK, 2009)Google Scholar
  27. 27.
    J.R. Welty, C.E. Wicks, R.E. Wilson, G. Rorrer, Fundamentals of Momentum, Heat, and Mass Transfer (John Wiley & Sons, USA, 2001)Google Scholar
  28. 28.
    N. Milosavljevic, P. Heikkilä, Proceedings of the 14th International Drying Symposium (IDS 2004), São Polo, Brazil (2004)Google Scholar
  29. 29.
    P. Heikkilä, N. Milosavljevic, Drying Technol. 21, 1957 (2003)CrossRefGoogle Scholar
  30. 30.
    R. Pesonen, Optimization of a Heatset dryer, Master Thesis (Lappeenranta University of Technology, Finland, 2009)Google Scholar
  31. 31.
    J.P. Holman, Heat Transfer, 10th edition (McGraw Hill, Singapore, 2010)Google Scholar
  32. 32.
    R. Bolz, G. Tuve, Handbook of Tables for Applied Engineering Science, 2nd edition (CRC Press, Cleveland, 1976)Google Scholar
  33. 33.
    P. Gerstner, Heat transfer through Porous multiphase systems: measurement, modelling and application in printing of coated papers, Doctoral dissertation (Aalto University, Helsinki, Finland, 2010)Google Scholar
  34. 34.
    COMSOL Multiphysics Reference manual, Version 5.0Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Joel Songok
    • 1
    Email author
  • Douglas W. Bousfield
    • 2
  • Patrick A.C. Gane
    • 3
    • 4
  • Martti Toivakka
    • 1
  1. 1.Laboratory of Paper Coating and Converting and Center for Functional MaterialsAbo Akademi UniversityÅbo/TurkuFinland
  2. 2.Department of Chemical and Biological EngineeringUniversity of MaineOronoUSA
  3. 3.School of Chemical Technology, Department of Forest Products TechnologyAalto UniversityAaltoFinland
  4. 4.Omya International AGOftringenSwitzerland

Personalised recommendations