Advertisement

Drying kinetics driven by the shape of the air/water interface in a capillary channel

  • Emmanuel KeitaEmail author
  • Stephan A. Koehler
  • Paméla Faure
  • David A. Weitz
  • Philippe Coussot
Regular Article
Part of the following topical collections:
  1. Wetting and Drying: Physics and Pattern Formation

Abstract.

We look at the drying process in a simple glass channel with dominant capillary effects as is the case in microfluidics. We find drying kinetics commonly observed for confined geometry, namely a constant period followed by a falling rate period. From visualization of the air/water interface with high resolution, we observe that the drying rate decreases without a drying front progression although this is the usually accepted mechanism for confined geometries. We show with FEM that in our specific geometry the falling rate period is due to changes in the shape of the air-water interface at the free surface where most evaporation occurs. Our simulations show that the sensitivity of the drying rate to the shape of the first air-water interface from the sample free surface implies that slight changes of the wetting or pinning conditions can significantly modify the drying rate.

Graphical abstract

Keywords

Topical Issue: Wetting and Drying: Physics and Pattern Formation 

References

  1. 1.
    M. Zimmermann, H. Schmid, P. Hunziker, E. Delamarche, Lab Chip 5, 1355 (2005)CrossRefGoogle Scholar
  2. 2.
    V. Sartre, M.C. Zaghdoudi, M. Lallemand, Int. J. Therm. Sci. 39, 498 (2000)CrossRefGoogle Scholar
  3. 3.
    G.M. Walker, D.J. Beebe, Lab Chip 2, 57 (2002)CrossRefGoogle Scholar
  4. 4.
    G. Gauthier, V. Lazarus, L. Pauchard, Langmuir 23, 4715 (2007)CrossRefGoogle Scholar
  5. 5.
    S.M. Yang, H. Miguez, G.A. Ozin, Adv. Funct. Mater. 12, 425 (2002)CrossRefGoogle Scholar
  6. 6.
    M. Prat, Int. J. Multiphase Flow 19, 691 (1993)CrossRefzbMATHGoogle Scholar
  7. 7.
    I.N. Tsimpanogiannis, Y.C. Yortsos, S. Poulou, N. Kanellopoulos, A.K. Stubos, Phys. Rev. E 59, 4353 (1999)CrossRefADSGoogle Scholar
  8. 8.
    T.M. Shaw, Phys. Rev. Lett. 59, 1671 (1987)CrossRefADSGoogle Scholar
  9. 9.
    J. Stefan, Sitzungsber. Akad. Wiss. Wien 63, 63 (1871)Google Scholar
  10. 10.
    M. Prat, Int. J. Heat Mass Transf. 50, 1455 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    B. Camassel, N. Sghaier, M. Prat, S. Ben Nasrallah, Chem. Engin. Sci. 60, 815 (2005)CrossRefGoogle Scholar
  12. 12.
    J.C.T. Eijkel, H.W. Reemeijer, D.C. Hermes, J.G. Bomer, A. Van der Berg, Phys. Rev. Lett. 95, 256107 (2005)CrossRefADSGoogle Scholar
  13. 13.
    F. Chauvet, P. Duru, S. Geoffroy, M. Prat, Phys. Rev. Lett. 103, 1 (2009)CrossRefGoogle Scholar
  14. 14.
    H. Wong, S. Morris, C.J. Radke, J. Colloid lntreface Sci. 148, 237 (1992)Google Scholar
  15. 15.
    A. Yiotis, D. Salin, E. Tajer, Y. Yortsos, Phys. Rev. E 85, 046308 (2012)CrossRefADSGoogle Scholar
  16. 16.
    A. Yiotis, D. Salin, E. Tajer, Y. Yortsos, Phys. Rev. E 86, 026310 (2012)CrossRefADSGoogle Scholar
  17. 17.
    L. Pel, A. Sawdy, V. Voronina, J. Cultural Heritage 11, 59 (2010)CrossRefGoogle Scholar
  18. 18.
    E. Keita, P. Faure, S. Rodts, P. Coussot, Phys. Rev. E 87, 062303 (2013)CrossRefADSGoogle Scholar
  19. 19.
    P. Faure, P. Coussot, Phys. Rev. E 82, 1 (2010)CrossRefGoogle Scholar
  20. 20.
    N. Shahidzadeh-Bonn, A. Azouni, P. Coussot, J. Phys.: Condens. Matter 19, 112101 (2007)ADSGoogle Scholar
  21. 21.
    N. Shokri, P. Lehmann, D. Or, Water Res. Res. 45, W02415 (2009)ADSGoogle Scholar
  22. 22.
    M. Suzuki, S. Maeda, J. Chem. Engin. Jpn 1, 26 (1968)CrossRefGoogle Scholar
  23. 23.
    P. Coussot, Eur. Phys. J. B 15, 557 (2000)CrossRefADSGoogle Scholar
  24. 24.
    N. Shokri, D. Or, Water Res. Res. 47, 1 (2011)CrossRefADSGoogle Scholar
  25. 25.
    J. Li, B. Cabane, M. Sztucki, L. Goehring, Langmuir 28, 200 (2012)CrossRefGoogle Scholar
  26. 26.
    I. Lesov, S. Tcholokova, N. Denkov, RSC Adv. 4, 811 (2014)CrossRefGoogle Scholar
  27. 27.
    M. Dong, I. Chatzis, J. Colloid Interface Sci. 172, 278 (1995)CrossRefGoogle Scholar
  28. 28.
    S. Geoffroy, F. Plouraboué, M. Prat, O. Amyot, J. Colloid Interface Sci. 294, 165 (2006)CrossRefGoogle Scholar
  29. 29.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Emmanuel Keita
    • 1
    • 2
    Email author
  • Stephan A. Koehler
    • 2
  • Paméla Faure
    • 1
  • David A. Weitz
    • 2
  • Philippe Coussot
    • 1
  1. 1.Laboratoire NavierUniversité Paris-EstParisFrance
  2. 2.School of Engineering and Applied Sciences and Physics DepartmentHarvard UniversityBostonUSA

Personalised recommendations