Advertisement

Numerical simulation of dip-coating in the evaporative regime

  • Mohar Dey
  • Frédéric DoumencEmail author
  • Béatrice Guerrier
Regular Article
Part of the following topical collections:
  1. Wetting and Drying: Physics and Pattern Formation

Abstract.

A hydrodynamic model is used for numerical simulations of a polymer solution in a dip-coating-like experiment. We focus on the regime of small capillary numbers where the liquid flow is driven by evaporation, in contrast to the well-known Landau-Levich regime dominated by viscous forces. Lubrication approximation is used to describe the flow in the liquid phase. Evaporation in stagnant air is considered (diffusion-limited evaporation), which results in a coupling between liquid and gas phases. Self-patterning due to the solutal Marangoni effect is observed for some ranges of the control parameters. We first investigate the effect of evaporation rate on the deposit morphology. Then the role of the spatial variations in the evaporative flux on the wavelength and mean thickness of the dried deposit is ascertained, by comparing the 2D and 1D diffusion models for the gas phase. Finally, for the very low substrate velocities, we discuss the relative importance of diffusive and advective components of the polymer flux, and consequences on the choice of the boundary conditions.

Graphical abstract

Keywords

Topical Issue: Wetting and Drying: Physics and Pattern Formation 

References

  1. 1.
    W. Han, Z. Lin, Angew. Chem. Int. Ed. 51, 1534 (2012)CrossRefGoogle Scholar
  2. 2.
    R.G. Larson, Aiche J. 60, 1538 (2014)CrossRefGoogle Scholar
  3. 3.
    U. Thiele, Adv. Colloid Interface Sci. 206, 399 (2014)CrossRefGoogle Scholar
  4. 4.
    L. Li, M.H. Köpf, S.V. Gurevich, R. Friedrich, L. Chi, Small 8, 488 (2012)CrossRefGoogle Scholar
  5. 5.
    L. Landau, B. Levich, Acta Physicochem. USSR 17, 42 (1942)Google Scholar
  6. 6.
    D. Quéré, A. de Ryck, Ann. Phys. (Paris) 23, 1 (1998)ADSGoogle Scholar
  7. 7.
    A.S. Dimitrov, K. Nagayama, Langmuir 12, 1303 (1996)CrossRefGoogle Scholar
  8. 8.
    G. Berteloot, C.-T. Pham, A. Daerr, F. Lequeux, L. Limat, EPL 83, 14003 (2008)CrossRefADSGoogle Scholar
  9. 9.
    M. Le Berre, Y. Chen, D. Baigl, Langmuir 25, 2554 (2009)CrossRefGoogle Scholar
  10. 10.
    G. Jing, H. Bodiguel, F. Doumenc, B. Guerrier, Langmuir 26, 2288 (2010)CrossRefGoogle Scholar
  11. 11.
    D. Grosso, J. Mater. Chem. 21, 17033 (2011)CrossRefGoogle Scholar
  12. 12.
    G. Berteloot, A. Daerr, F. Lequeux, L. Limat, Chem. Eng. Proc.: Proc. Int. 68, 69 (2013)CrossRefGoogle Scholar
  13. 13.
    L. Frastia, A.J. Archer, U. Thiele, Soft Matter 8, 11363 (2012)CrossRefADSGoogle Scholar
  14. 14.
    M.R.E. Warner, R.V. Craster, O.K. Matar, J. Colloid Interface Sci. 267, 92 (2003)CrossRefGoogle Scholar
  15. 15.
    L. Frastia, A.J. Archer, U. Thiele, Phys. Rev. Lett. 106, 077801 (2011)CrossRefADSGoogle Scholar
  16. 16.
    R.V. Craster, O.K. Matar, K. Sefiane, Langmuir 25, 3601 (2009)CrossRefGoogle Scholar
  17. 17.
    M.H. Köpf, S.V. Gurevich, R. Friedrich, L. Chi, Langmuir 26, 10444 (2010)CrossRefGoogle Scholar
  18. 18.
    F. Doumenc, B. Guerrier, Europhys. Lett. 103, 14001 (2013)CrossRefADSGoogle Scholar
  19. 19.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)CrossRefADSGoogle Scholar
  20. 20.
    R. Ober, L. Paz, C. Taupin, P. Pincus, S. Boileau, Macromolecules 16, 50 (1983)CrossRefADSGoogle Scholar
  21. 21.
    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985)CrossRefADSGoogle Scholar
  22. 22.
    V.M. Starov, M.G. Velarde, J. Phys.: Condens. Matter 21, 464121 (2009)ADSGoogle Scholar
  23. 23.
    J.M. Zilinski, Macromolecules 29, 6044 (1996)CrossRefADSGoogle Scholar
  24. 24.
    U. Thiele, D.V. Todorova, H. Lopez, Phys. Rev. Lett. 111, 117801 (2013)CrossRefADSGoogle Scholar
  25. 25.
    P.J. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1953)Google Scholar
  26. 26.
    J. Eggers, L.M. Pismen, Phys. Fluids 22, 112101 (2010)CrossRefADSGoogle Scholar
  27. 27.
    G. Barnes, Colloid Interface Sci. 25, 89 (1986)CrossRefGoogle Scholar
  28. 28.
    F. Doumenc, B. Guerrier, Langmuir 26, 13959 (2010)CrossRefGoogle Scholar
  29. 29.
    J.E. Mark, Polymer Data Handbook (Oxford University Press, New York, 1999)Google Scholar
  30. 30.
    Y. Marcus, The Properties of Solvents (John Wiley and sons, Chichester, 1998)Google Scholar
  31. 31.
    F. Doumenc, B. Guerrier, C. Allain, J. Chem. Eng. Data 50, 983 (2005)CrossRefGoogle Scholar
  32. 32.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)CrossRefADSGoogle Scholar
  33. 33.
    C. Poulard, P. Damman, EPL 80, 64001 (2007)CrossRefADSGoogle Scholar
  34. 34.
    A.M. Cazabat, P. Carles, MRS Proc. 248, 519 (1991)CrossRefGoogle Scholar
  35. 35.
    M.H. Kőpf, U. Thiele, Nonlinearity 27, 2711 (2014)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mohar Dey
    • 1
  • Frédéric Doumenc
    • 1
    • 2
    Email author
  • Béatrice Guerrier
    • 1
  1. 1.Laboratoire FAST, Univ. Paris-Sud, CNRSUniversité Paris-SaclayOrsayFrance
  2. 2.Sorbonne UniversitésParisFrance

Personalised recommendations