Flow regime and deposition pattern of evaporating binary mixture droplet suspended with particles

  • Xin Zhong
  • Fei DuanEmail author
Regular Article
Part of the following topical collections:
  1. Wetting and Drying: Physics and Pattern Formation


The flow regimes and the deposition pattern have been investigated by changing the ethanol concentration in a water-based binary mixture droplet suspended with alumina nanoparticles. To visualize the flow patterns, Particle Image Velocimetry (PIV) has been applied in the binary liquid droplet containing the fluorescent microspheres. Three distinct flow regimes have been revealed in the evaporation. In Regime I, the vortices and chaotic flows are found to carry the particles to the liquid-vapor interface and to promote the formation of particle aggregation. The aggregates move inwards in Regime II as induced by the Marangoni flow along the droplet free surface. Regime III is dominated by the drying of the left water and the capillary flow driving particles radially outward is observed. The relative weightings of Regimes I and II, which are enhanced with an increasing load of ethanol, determine the motion of the nanoparticles and the formation of the final drying pattern.

Graphical abstract


Topical Issue: Wetting and Drying: Physics and Pattern Formation 


  1. 1.
    B.J. Kirby, Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices (Cambridge University Press, 2010)Google Scholar
  2. 2.
    M.Z. Bazant, T.M. Squires, Curr. Opin. Colloid Interface Sci. 15, 203 (2010)CrossRefGoogle Scholar
  3. 3.
    R. Westermeier, Electrophoresis in Practice (John Wiley & Sons, 2006)Google Scholar
  4. 4.
    J.P. Landers, Handbook of Capillary and Microchip Electrophoresis and Associated Microtechniques (CRC Press, 2007).Google Scholar
  5. 5.
    D. Keren, Proten Electrophoresis in Clinical Diagnosis (CRC Press, 2003)Google Scholar
  6. 6.
    J.R. Petersen, A.O. Okorodudu, A. Mohammad, D.A. Payne, Clin. Chim. Acta. 330, 1 (2003)CrossRefGoogle Scholar
  7. 7.
    R.H. Neubert, H.-H. Ruttinger, Affinity Capillary Electrophoresis in Pharmaceutics and Biopharmaceutics (CRC Press, 2003)Google Scholar
  8. 8.
    X. Zhong, A. Crivoi, F. Duan, Adv. Colloid Interface Sci. 217, 13 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Sefiane, S. David, M.E.R. Shanahan, J. Phys. Chem. B 112, 11317 (2008)CrossRefGoogle Scholar
  10. 10.
    K. Sefiane, L. Tadrist, M. Douglas, Int. J. Heat Mass Transf. 46, 4527 (2003)CrossRefGoogle Scholar
  11. 11.
    A.K.H. Cheng, D.M. Soolaman, H. Yu, J. Phys. Chem. B 110, 11267 (2006)CrossRefGoogle Scholar
  12. 12.
    C. Liu, E. Bonaccurso, Rev. Sci. Instrum. 81, 013702 (2010)CrossRefADSGoogle Scholar
  13. 13.
    L. Shi, P. Shen, D. Zhang, Q. Lin, Q. Jiang, Surf. Interface Anal. 41, 951 (2009)CrossRefGoogle Scholar
  14. 14.
    J.R.E. Christy, K. Sefiane, E. Munro, J. Bionic. Eng. 7, 321 (2010)CrossRefGoogle Scholar
  15. 15.
    S.M. Rowan, M.I. Newton, F.W. Driewer, G. McHale, J. Phys. Chem. B 104, 8217 (2000)CrossRefGoogle Scholar
  16. 16.
    J.R.E. Christy, Y. Hamamoto, K. Sefiane, Phys. Rev. Lett. 106, 205701 (2011)CrossRefADSGoogle Scholar
  17. 17.
    X. Zhong, F. Duan, J. Phys. Chem. B 118, 13636 (2014)CrossRefGoogle Scholar
  18. 18.
    W. Ristenpart, P. Kim, C. Domingues, J. Wan, H. Stone, Phys. Rev. Lett. 99, 234502 (2007)CrossRefADSGoogle Scholar
  19. 19.
    X. Zhong, F. Duan, Langmuir 31, 5291 (2015)CrossRefGoogle Scholar
  20. 20.
    F. Duan, J. Phys. D Appl. Phys. 42, 102004 (2009)CrossRefADSGoogle Scholar
  21. 21.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations