Advertisement

Wetting and elasto-plasticity based sculpture of liquid marbles

  • Jianlin LiuEmail author
  • Pingcheng Zuo
Regular Article
Part of the following topical collections:
  1. Wetting and Drying: Physics and Pattern Formation

Abstract.

As an emerging material with exotic properties, liquid marble holds great potential for such areas as microfluidics, stimuli-responsive sensors, micro-chemical reactors, micro-bioreactors, energy harvesting devices, and mechanical structures. In this study, we mainly concentrate on the mechanical behaviors, such as elasto-plasticity of liquid marble with the decrease of liquid volume. The contact radius with the substrate and Young’s contact angle of liquid marble are both measured with the change of water volume, and those of a water droplet are compared. The mechanism for the different responses for liquid marble and water droplet is clarified according to the mechanics analysis. Moreover, it is found that liquid marble can behave like an elasto-plastic material when the particle surface density is big enough. Based upon this fact, liquid marble can be sculpted to all kinds of special shapes as expected. These investigations may cast new light on how to engineer multifunctional materials and devices, which are beneficial to microprinting and micromachining.

Graphical abstract

Keywords

Topical Issue: Wetting and Drying: Physics and Pattern Formation 

References

  1. 1.
    P. Aussillous, D. Quéré, Nature 411, 924 (2001)CrossRefADSGoogle Scholar
  2. 2.
    E. Bormashenko, Curr. Opin. Colloid Interface Sci. 16, 266 (2011)CrossRefGoogle Scholar
  3. 3.
    G. McHale, M.I. Newton, Soft Matter 11, 2530 (2015)CrossRefADSGoogle Scholar
  4. 4.
    L. Mahadevan, Y. Pomeau, Phys. Fluid 11, 2449 (1999)CrossRefMathSciNetzbMATHADSGoogle Scholar
  5. 5.
    P. Aussillous, D. Quéré, Proc. R. Soc. London, Ser. A 462, 973 (2006)CrossRefzbMATHADSGoogle Scholar
  6. 6.
    E. Bormashenko, R. Pogreb, Y. Bormashenko, A. Musin, T. Stein, Langmuir 24, 12119 (2008)CrossRefGoogle Scholar
  7. 7.
    Y.H. Xue, H.X. Wang, Y. Zhao, L.M. Dai, L.F. Feng, X.G. Wang, T. Lin, Adv. Mater. 22, 4814 (2010)CrossRefGoogle Scholar
  8. 8.
    E. Bormashenko, R. Balter, D. Aurbach, Appl. Phys. Lett. 97, 091908 (2010)CrossRefADSGoogle Scholar
  9. 9.
    D. Dupin, S.P. Armes, S. Fujii, J. Am. Chem. Soc. 131, 5386 (2009)CrossRefGoogle Scholar
  10. 10.
    J.B. Keller, Phys. Fluid 10, 3009 (1998)CrossRefzbMATHADSGoogle Scholar
  11. 11.
    E. Bormashenko, A. Musin, Appl. Surf. Sci. 255, 6429 (2009)CrossRefADSGoogle Scholar
  12. 12.
    C. Planchette, A.L. Biance, E. Lorenceau, EPL 97, 14003 (2012)CrossRefADSGoogle Scholar
  13. 13.
    D.Y. Zang, X.L. Wang, X.G. Geng, Y.M. Chen, Soft Matter 9, 394 (2013)CrossRefADSGoogle Scholar
  14. 14.
    M. Dandan, H.Y. Erbil, Langmuir 25, 8362 (2009)CrossRefGoogle Scholar
  15. 15.
    G. Marty, N. Tsapis, Eur. Phys. J. E 27, 213 (2008)CrossRefGoogle Scholar
  16. 16.
    N. Tsapis, E.R. Dufresne, S.S. Sinha, C.S. Riera, J.W. Hutchinson, L. Mahadevan, D.A. Weitz, Phys. Rev. Lett. 94, 018302 (2005)CrossRefADSGoogle Scholar
  17. 17.
    S. Asare-Asher, J.N. Connor, R. Sedev, J. Colloid Interface Sci. 449, 341 (2015)CrossRefGoogle Scholar
  18. 18.
    X.G. Li, J. Shen, Chem. Commun. 49, 10016 (2013)CrossRefGoogle Scholar
  19. 19.
    Y.P. Zhao, Theor. Appl. Mech. Lett. 4, 034002 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.College of Pipeline and Civil EngineeringChina University of PetroleumQingdaoChina

Personalised recommendations