Revisiting the effect of hierarchical structure on the superhydrophobicity

  • Kejun Lin
  • Duyang ZangEmail author
  • Xingguo Geng
  • Zhen Chen
Regular Article
Part of the following topical collections:
  1. Wetting and Drying: Physics and Pattern Formation


We have studied the wetting behaviors of surfaces with a single micro-scale structure and a double micro/nano hierarchical structure, respectively. We have found the delayed wetting phenomenon on the single micro scale surface, which indicates that the wetting state transits from the initial Cassie state to the Cassie impregnating one. Furthermore, the droplet rebound becomes incomplete on the single micro scale surface when the impact velocity exceeds a critical value. On the contrary, complete rebound can still be observed when impacting on the micro/nano hierarchical structure. We proposed that, under static deposition the wetting transition occurs though the contact line depinning mechanism, whereas it occurs via sagging mechanism under a dynamic impact. Our results may be helpful for the understanding of superhydrophobicity and the wetting transition on complex structures.

Graphical abstract


Topical Issue: Wetting and Drying: Physics and Pattern Formation 


  1. 1.
    A. Marmur, Langmuir 20, 3517 (2004)CrossRefGoogle Scholar
  2. 2.
    I.P. Parkin, R. Palgrave, J. Mater. Chem. 15, 1689 (2005)CrossRefGoogle Scholar
  3. 3.
    L.L. Cao, A.K. Jones, V.K. Sikka, J.Z. Wu, D. Gao, Langmuir 25, 12444 (2009)CrossRefGoogle Scholar
  4. 4.
    R.J. Daniello, N.E. Waterhouse, J.P. Rothstein, Phys. Fluids 21, 085103 (2009)CrossRefADSGoogle Scholar
  5. 5.
    B. Bhushan, Y.C. Jung, Nanotechnology 17, 2758 (2006)CrossRefADSGoogle Scholar
  6. 6.
    X.F. Gao, L. Jiang, Nature 432, 36 (2004)CrossRefADSGoogle Scholar
  7. 7.
    C.J. Lv, P.F. Hao, Z.H. Yao, Y. Song, X.W. Zhang, F. He, Appl. Phys. Lett. 103, 021601 (2013)CrossRefADSGoogle Scholar
  8. 8.
    K. Koch, B. Bhushan, W. Barthlott, Prog. Mater. Sci. 54, 137 (2009)CrossRefGoogle Scholar
  9. 9.
    N.A. Patankar, Langmuir 20, 8209 (2004)CrossRefGoogle Scholar
  10. 10.
    N.J. Shirtcliffe, G. McHale, M.I. Newton, G. Chabrol, C.C. Perry, Adv. Mater. 16, 1929 (2004)CrossRefGoogle Scholar
  11. 11.
    S.D. Aziz, S. Chandra, Int. J. Heat Mass Transfer 43, 2841 (2000)CrossRefGoogle Scholar
  12. 12.
    L. Jiang, Y. Zhao, J. Zhai, Angew. Chem. Int. Ed. 43, 4338 (2004)CrossRefGoogle Scholar
  13. 13.
    L. Gao, T.J. McCarthy, Langmuir 22, 2966 (2006)CrossRefGoogle Scholar
  14. 14.
    A.B.D. Cassie, Discuss. Faraday Soc. 3, 11 (1948)CrossRefGoogle Scholar
  15. 15.
    R.N. Wenzel, Ind. Eng. Chem. 28, 988 (1936)CrossRefGoogle Scholar
  16. 16.
    X. Yao, Q.W. Chen, L. Xu, Q.K. Li, Y.L. Song, X.F. Gao, D. Quéré, L. Jiang, Adv. Funct. Mater. 20, 656 (2010)CrossRefGoogle Scholar
  17. 17.
    E. Bormashenko, R. Pogreb, G. Whyman, M. Erlich, Langmuir 23, 6501 (2007)CrossRefGoogle Scholar
  18. 18.
    D.Y. Zang, X.L. Wang, X.G. Geng, Y.J. Zhang, Y.M. Chen, Soft Matter 9, 394 (2013)CrossRefADSGoogle Scholar
  19. 19.
    Q.S. Zheng, Y. Yu, Z.H. Zhao, Langmuir 21, 12207 (2005)CrossRefGoogle Scholar
  20. 20.
    Y. Yu, Z.H. Zhao, Q.S. Zheng, Langmuir 23, 8212 (2007)CrossRefGoogle Scholar
  21. 21.
    Y.H. Liu, L.S. Moevius, X.P. Xu, T.Z. Qian, J.M. Yeomans, Z.K. Wang, Nat. Phys. 10, 515 (2014)CrossRefGoogle Scholar
  22. 22.
    T. Verho, J.T. Korhonena, L. Sainiemi, V. Jokinen, C. Bower, K. Franze, S. Franssila, P. Andrewd, O. Ikkala, Robin H.A. Ras, Proc. Natl. Acad. Sci. U.S.A. 109, 10210 (2012)CrossRefADSGoogle Scholar
  23. 23.
    G.C.S. Collins, A.C. Lowe, D. Nicholas, Euro Polym. J. 9, 1173 (1973)CrossRefGoogle Scholar
  24. 24.
    G. McHale, S. Aqil, N.J. Shirtcliffe, M.I. Newton, H.Y. Erbil, Langmuir 21, 11053 (2005)CrossRefGoogle Scholar
  25. 25.
    H. Kim, C. Lee, M.H. Kim, J. Kim, Langmuir 28, 11250 (2012)CrossRefGoogle Scholar
  26. 26.
    P. Papadopoulos, L. Mammen, X. Deng, D. Vollmer, H.J. Butt, Proc. Natl. Acad. Sci. U.S.A. 110, 3254 (2013)CrossRefADSGoogle Scholar
  27. 27.
    P.G. de Gennes, F. Brochard-Wyarty, D. Quéré, Cappillarity and Wetting Phenomena (Springer, Berlin, 2003)Google Scholar
  28. 28.
    L. Xu, S. Davies, A. Schofield, D. Weitz, Phys. Rev. Lett. 101, 094502 (2008)CrossRefADSGoogle Scholar
  29. 29.
    G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge, England, 2000)Google Scholar
  30. 30.
    L. Xu, A. Bergès, Pe.J. Lu, A.R. Studart, A.B. Schofield, H. Oki, S. Davies, D.A. Weitz, Phys. Rev. Lett. 104, 128303 (2010)CrossRefADSGoogle Scholar
  31. 31.
    P.C. Carman, Flow of Gases through Porous Media (Butterworth, London, 1956)Google Scholar
  32. 32.
    X. Deng, F. Schellenberger, P. Papadopoulos, D. Vollmer, H.J. Butt, Langmuir 29, 7847 (2013)CrossRefGoogle Scholar
  33. 33.
    D.Y. Zang, W.X. Zhang, J.Y. Song, Z. Chen, Y.J. Zhang, X.G. Geng, F. Chen, Appl. Phys. Lett. 105, 231603 (2014)CrossRefADSGoogle Scholar
  34. 34.
    D. Richard, C. Clanet, D. Quéré, Nature 417, 811 (2002)CrossRefADSGoogle Scholar
  35. 35.
    C. Antonini, F. Villa, I. Bernagozzi, A. Amirfazli, M. Marengo, Langmuir 29, 16045 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Kejun Lin
    • 1
  • Duyang Zang
    • 1
    • 2
    Email author
  • Xingguo Geng
    • 1
    • 2
  • Zhen Chen
    • 1
  1. 1.Functional Soft Matter & Materials Group, Key Laboratory of Space Applied Physics and Chemistry of Ministry of Education, School of ScienceNorthwestern Polytechnical UniversityXi’anChina
  2. 2.NPU-UM II joint Lab of Soft Matter, School of ScienceNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations