Advertisement

Water jet indentation for local elasticity measurements of soft materials

  • N. R. Chevalier
  • Ph. Dantan
  • E. Gazquez
  • A. J. M. Cornelissen
  • V. Fleury
Tips and Tricks

Abstract.

We present a novel elastography method for soft materials (100Pa-100kPa) based on indentation by a μm-sized water jet. We show that the jet creates a localized deformation (“cavity”) of the material that can be easily visualized. We study experimentally how cavity width and depth depend on jet speed, height, incidence angle and sample elasticity. We describe how to calibrate the indenter using gels of known stiffness. We then demonstrate that the indenter yields quantitative elasticity values within 10% of those measured by shear rheometry. We corroborate our experimental findings with fluid-solid finite-element simulations that quantitatively predict the cavity profile and fluid flow lines. The water jet indenter permits in situ local stiffness measurements of 2D or 3D gels used for cell culture in physiological buffer, is able to assess stiffness heterogeneities with a lateral resolution in the range 50-500μm (at the tissue scale) and can be assembled at low cost with standard material from a biology laboratory. We therefore believe it will become a valuable method to measure the stiffness of a wide range of soft, synthetic or biological materials.

Graphical abstract

Keywords

Tips and Tricks 

Supplementary material

10189_2016_234_MOESM1_ESM.pdf (231 kb)
Supplementary material
10189_2016_234_MOESM2_ESM.avi (1.1 mb)
Supplementary material
10189_2016_234_MOESM3_ESM.mpg (208 kb)
Supplementary material
10189_2016_234_MOESM4_ESM.mpg (1.9 mb)
Supplementary material

References

  1. 1.
    A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126, 677 (2006)CrossRefGoogle Scholar
  2. 2.
    J.R. Tse, A.J. Engler, PLoS One 6, e15978 (2011)CrossRefADSGoogle Scholar
  3. 3.
    C.-M. Lo, H.-B. Wang, M. Dembo, Y. Wang, Biophys. J. 79, 144 (2000)CrossRefGoogle Scholar
  4. 4.
    L.G. Vincent, Y.S. Choi, B. Alonso-Latorre, J.C. del Alamo, A.J. Engler, Biotechnol. J. 8, 472 (2013)CrossRefGoogle Scholar
  5. 5.
    V. Fleury, N.R. Chevalier, F. Furfaro, J.-L. Duband, Eur. Phys. J. E 38, 6 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Majkut, T. Idema, J. Swift, C. Krieger, A. Liu, D.E. Discher, Curr. Biol. 23, 2434 (2013)CrossRefGoogle Scholar
  7. 7.
    A. Peaucelle, S.A. Braybrook, L. Le Guillou, E. Bron, C. Kuhlemeier, H. Hofte, Curr. Biol. 21, 1720 (2011)CrossRefGoogle Scholar
  8. 8.
    I. Levental, K.R. Levental, E.A. Klein, R. Assoian, R.T. Miller, R.G. Wells, P.A. Janmey, J. Phys.: Condens. Matter 22, 194120 (2010)ADSGoogle Scholar
  9. 9.
    L. Davidson, R. Keller, Methods Cell Biol. 83, 425 (2007)CrossRefGoogle Scholar
  10. 10.
    K. Guevorkian, M.-J. Colbert, M. Durth, S. Dufour, F. Brochard-Wyart, Phys. Rev. Lett. 104, 218101 (2010)CrossRefADSGoogle Scholar
  11. 11.
    E.A. Corbin, L.J. Millet, J.H. Pikul, C.L. Johnson, J.G. Georgiadis, W.P. King, R. Bashir, Biomed. Microdev. 15, 311 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Li, K.D. Mohan, W.W. Sanders, A.L. Oldenburg, J. Biomed. Opt. 16, 116005 (2011)CrossRefADSGoogle Scholar
  13. 13.
    Y.P. Zheng, M.H. Lu, Q. Wang, Ultrasonics 44, 203 (2006)CrossRefGoogle Scholar
  14. 14.
    M. Lu, Y. Zheng, Q. Huang, Conf. Proc. IEEE Eng. Med. Biol. Soc. 1, 993 (2005)Google Scholar
  15. 15.
    Y. Wang, Y.P. Huang, A. Liu, W. Wan, Y.P. Zheng, Ultrasound Med. Biol. 40, 1296 (2014)CrossRefGoogle Scholar
  16. 16.
    J.L. Gennisson, T. Deffieux, M. Fink, M. Tanter, Diag. Interv. Im. 94, 487 (2013)CrossRefGoogle Scholar
  17. 17.
    D. Sánchez, N. Johnson, C. Li, P. Novak, J. Rheinlaender, Y. Zhang, U. Anand, P. Anand, J. Gorelik, G.I. Frolenkov, C. Benham, M. Lab, V.P. Ostanin, T.E. Schäffer, D. Klenerman, Y.E. Korchev, Biophys. J. 95, 3017 (2008)CrossRefGoogle Scholar
  18. 18.
    V. Fleury, A. Al-Kilani, O.P. Boryskina, A.J.M. Cornelissen, T.H. Nguyen, M. Unbekandt, L. Leroy, G. Baffet, F. Le Noble, O. Sire, E. Lahaye, V. Burgaud, Phys. Rev. E 81, 1 (2010)CrossRefGoogle Scholar
  19. 19.
    W.L. Ottar, Insight 23, 11 (1998)Google Scholar
  20. 20.
    G. Boyer, C. Pailler Mattei, J. Molimard, M. Pericoi, S. Laquieze, H. Zahouani, Med. Eng. Phys. 34, 172 (2012)CrossRefGoogle Scholar
  21. 21.
    D.C. Lin, D.I. Shreiber, E.K. Dimitriadis, F. Horkay, Biomech. Model. Mechanobiol. 8, 345 (2009)CrossRefGoogle Scholar
  22. 22.
    K.L. Johnson, Contact Mechanics (Cambridge University Press, 1985)Google Scholar
  23. 23.
    P. Zimoch, E. Tixier, J. Hsu, A. Winter, A. Hosoi, Fast, large amplitude vibrations of compliant cylindrical shells carrying a fluid, ArXiv e-prints, October 2012Google Scholar
  24. 24.
    T. Boudou, J. Ohayon, C. Picart, R.I. Pettigrew, P. Tracqui, Biorheology 46, 191 (2009)Google Scholar
  25. 25.
    T. Uth, V.S. Deshpande, Proc. Natl. Acad. Sci. U.S.A. 110, 20028 (2013)CrossRefADSGoogle Scholar
  26. 26.
    E. Guyon, J-P. Hulin, Hydrodynamique Physique (EDP Science, 2001)Google Scholar
  27. 27.
    J. Guyette, S.E. Gilpin, J.M. Charest, L.F. Tapias, X. Ren, H.C. Ott, Perfus. Decellulariz. Whole Organs 9, 1451 (2014)Google Scholar
  28. 28.
    M.-T. Ke, S. Fujimoto, T. Imai, Nat. Neurosci. 16, 1154 (2013)CrossRefGoogle Scholar
  29. 29.
    R.N. Palchesko, L. Zhang, Y. Sun, A.W. Feinberg, PLoS One 7, e51499 (2012) DOI:10.1371/journal.pone.0051499 CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • N. R. Chevalier
    • 1
  • Ph. Dantan
    • 1
  • E. Gazquez
    • 2
    • 3
  • A. J. M. Cornelissen
    • 1
  • V. Fleury
    • 1
  1. 1.Laboratoire Matière et Systèmes ComplexesUniversité Paris Diderot/CNRS UMR 7057ParisFrance
  2. 2.CNRS-Institut CurieUMR144Paris cedex 05France
  3. 3.Present address: INSERM U955CréteilFrance

Personalised recommendations