A regularised singularity approach to phoretic problems

  • Thomas D. Montenegro-Johnson
  • Sébastien Michelin
  • Eric Lauga
Tips and Tricks

Abstract.

An efficient, accurate, and flexible numerical method is proposed for the solution of the swimming problem of one or more autophoretic particles in the purely diffusive limit. The method relies on successive boundary element solutions of the Laplacian and the Stokes flow equations using regularised Green’s functions for swift, simple implementations, an extension of the well-known method of “regularised stokeslets” for Stokes flow problems. The boundary element method is particularly suitable for phoretic problems, since no quantities in the domain bulk are required to compute the swimming velocity. For time-dependent problems, the method requires no re-meshing and simple boundaries such as a plane wall may be added at no increase to the size of the linear system through the method of images. The method is validated against two classical examples for which an analytical or semi-analytical solution is known, a two-sphere system and a Janus particle, and provides a rigorous computational pipeline to address further problems with complex geometry and multiple bodies.

Graphical abstract

Keywords

Tips and Tricks 

References

  1. 1.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev. Biomed. Eng. 12, 55 (2010)CrossRefGoogle Scholar
  3. 3.
    A. Ghosh, P. Fischer, Nano Lett. 9, 2243 (2009)CrossRefADSGoogle Scholar
  4. 4.
    F.A. Godínez, L. Koens, T.D. Montenegro-Johnson, R. Zenit, E. Lauga, Exp. Fluids 56, 97 (2015)CrossRefGoogle Scholar
  5. 5.
    S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)CrossRefADSGoogle Scholar
  6. 6.
    A. Walther, A.H.E. Müller, Soft Matter 4, 663 (2008)CrossRefADSGoogle Scholar
  7. 7.
    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)CrossRefADSGoogle Scholar
  8. 8.
    W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.St. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)CrossRefGoogle Scholar
  9. 9.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)CrossRefADSGoogle Scholar
  10. 10.
    A. Brown, W. Poon, Soft Matter 10, 4016 (2014)CrossRefADSGoogle Scholar
  11. 11.
    I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012)CrossRefADSGoogle Scholar
  12. 12.
    R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)CrossRefADSGoogle Scholar
  13. 13.
    S. Shklyaev, J.F. Brady, U.M. Cordova-Figueroa, J. Fluid Mech. 748, 488 (2014)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    S. Michelin, E. Lauga, Euro. Phys. J. E 38, 1 (2015)CrossRefGoogle Scholar
  15. 15.
    S. Reigh, R. Kapral, Soft matter 11, 3149 (2015)CrossRefADSGoogle Scholar
  16. 16.
    F. Sciortino, A. Giacometti, G. Pastore, Phys. Chem. Chem. Phys. 12, 11869 (2010)CrossRefGoogle Scholar
  17. 17.
    P.K. Ghosh, V.R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 110, 268301 (2013)CrossRefADSGoogle Scholar
  18. 18.
    R. Soto, R. Golestanian, Phys. Rev. Lett. 112, 068301 (2014)CrossRefADSGoogle Scholar
  19. 19.
    W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 434 (2015)CrossRefADSGoogle Scholar
  20. 20.
    R. Singh, S. Ghose, R. Adhikari, J. Stat. Mech. 2015, 06017 (2015)MathSciNetCrossRefGoogle Scholar
  21. 21.
    S. Michelin, T.D. Montenegro-Johnson, G. De Canio, N. Lobato-Dauzier, E. Lauga, Soft Matter 11, 5804 (2015)CrossRefADSGoogle Scholar
  22. 22.
    R. Cortez, SIAM J. Sci. Comput. 23, 1204 (2001)MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    R. Cortez, L. Fauci, A. Medovikov, Phys. Fluids 17, 1 (2005)MathSciNetCrossRefGoogle Scholar
  24. 24.
    D.J. Smith, Proc. R. Soc. London A 465, 3605 (2009)MATHCrossRefADSGoogle Scholar
  25. 25.
    S. Gueron, N. Liron, Biophys. J. 63, 1045 (1992)CrossRefADSGoogle Scholar
  26. 26.
    J. Ainley, S. Durkin, R. Embid, P. Boindala, R. Cortez, J. Comput. Phys. 227, 4600 (2008)MATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)MATHMathSciNetCrossRefADSGoogle Scholar
  28. 28.
  29. 29.
    P.O. Persson, G. Strang, SIAM Rev. 46, 329 (2004)MATHMathSciNetCrossRefADSGoogle Scholar
  30. 30.
    J.H.M. Frijns, S.L. De Snoo, R. Schoonhoven, IEEE Trans. on Biomed. Engin. 47, 1336 (2000)CrossRefGoogle Scholar
  31. 31.
    M.A. Taylor, B.A. Wingate, R.E. Vincent, SIAM J. Numer. Anal. 38, 1707 (2000)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    A.A. Smith, T.D. Johnson, D.J. Smith, J.R. Blake, J. Fluid Mech. 705, 26 (2012)MATHCrossRefADSGoogle Scholar
  33. 33.
  34. 34.
    C. Pozrikidis, A practical guide to boundary element methods with the software library BEMLIB (CRC Press, 2002)Google Scholar
  35. 35.
    H. Guo, J. Nawroth, Y. Ding, E. Kanso, Phys. Fluids 26, 091901 (2014)CrossRefADSGoogle Scholar
  36. 36.
    S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014)MathSciNetCrossRefADSGoogle Scholar
  37. 37.
    S. Michelin, E. Lauga, D. Bartolo, Phys. Fluids 25, 061701 (2013)CrossRefADSGoogle Scholar
  38. 38.
    B. Ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Thomas D. Montenegro-Johnson
    • 1
  • Sébastien Michelin
    • 2
  • Eric Lauga
    • 1
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of Cambridge, CMSCambridgeUK
  2. 2.LadHyX - Département de MécaniqueEcole polytechnique - CNRSPalaiseau CedexFrance

Personalised recommendations