Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A regularised singularity approach to phoretic problems

Abstract.

An efficient, accurate, and flexible numerical method is proposed for the solution of the swimming problem of one or more autophoretic particles in the purely diffusive limit. The method relies on successive boundary element solutions of the Laplacian and the Stokes flow equations using regularised Green’s functions for swift, simple implementations, an extension of the well-known method of “regularised stokeslets” for Stokes flow problems. The boundary element method is particularly suitable for phoretic problems, since no quantities in the domain bulk are required to compute the swimming velocity. For time-dependent problems, the method requires no re-meshing and simple boundaries such as a plane wall may be added at no increase to the size of the linear system through the method of images. The method is validated against two classical examples for which an analytical or semi-analytical solution is known, a two-sphere system and a Janus particle, and provides a rigorous computational pipeline to address further problems with complex geometry and multiple bodies.

Graphical abstract

This is a preview of subscription content, log in to check access.

References

  1. 1

    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

  2. 2

    B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev. Biomed. Eng. 12, 55 (2010)

  3. 3

    A. Ghosh, P. Fischer, Nano Lett. 9, 2243 (2009)

  4. 4

    F.A. Godínez, L. Koens, T.D. Montenegro-Johnson, R. Zenit, E. Lauga, Exp. Fluids 56, 97 (2015)

  5. 5

    S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)

  6. 6

    A. Walther, A.H.E. Müller, Soft Matter 4, 663 (2008)

  7. 7

    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989)

  8. 8

    W.F. Paxton, K.C. Kistler, C.C. Olmeda, A. Sen, S.K.St. Angelo, Y. Cao, T.E. Mallouk, P.E. Lammert, V.H. Crespi, J. Am. Chem. Soc. 126, 13424 (2004)

  9. 9

    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

  10. 10

    A. Brown, W. Poon, Soft Matter 10, 4016 (2014)

  11. 11

    I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012)

  12. 12

    R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007)

  13. 13

    S. Shklyaev, J.F. Brady, U.M. Cordova-Figueroa, J. Fluid Mech. 748, 488 (2014)

  14. 14

    S. Michelin, E. Lauga, Euro. Phys. J. E 38, 1 (2015)

  15. 15

    S. Reigh, R. Kapral, Soft matter 11, 3149 (2015)

  16. 16

    F. Sciortino, A. Giacometti, G. Pastore, Phys. Chem. Chem. Phys. 12, 11869 (2010)

  17. 17

    P.K. Ghosh, V.R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 110, 268301 (2013)

  18. 18

    R. Soto, R. Golestanian, Phys. Rev. Lett. 112, 068301 (2014)

  19. 19

    W.E. Uspal, M.N. Popescu, S. Dietrich, M. Tasinkevych, Soft Matter 11, 434 (2015)

  20. 20

    R. Singh, S. Ghose, R. Adhikari, J. Stat. Mech. 2015, 06017 (2015)

  21. 21

    S. Michelin, T.D. Montenegro-Johnson, G. De Canio, N. Lobato-Dauzier, E. Lauga, Soft Matter 11, 5804 (2015)

  22. 22

    R. Cortez, SIAM J. Sci. Comput. 23, 1204 (2001)

  23. 23

    R. Cortez, L. Fauci, A. Medovikov, Phys. Fluids 17, 1 (2005)

  24. 24

    D.J. Smith, Proc. R. Soc. London A 465, 3605 (2009)

  25. 25

    S. Gueron, N. Liron, Biophys. J. 63, 1045 (1992)

  26. 26

    J. Ainley, S. Durkin, R. Embid, P. Boindala, R. Cortez, J. Comput. Phys. 227, 4600 (2008)

  27. 27

    T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)

  28. 28

    http://uk.mathworks.com/matlabcentral/profile/authors/5102158-thomas-montenegro-johnson

  29. 29

    P.O. Persson, G. Strang, SIAM Rev. 46, 329 (2004)

  30. 30

    J.H.M. Frijns, S.L. De Snoo, R. Schoonhoven, IEEE Trans. on Biomed. Engin. 47, 1336 (2000)

  31. 31

    M.A. Taylor, B.A. Wingate, R.E. Vincent, SIAM J. Numer. Anal. 38, 1707 (2000)

  32. 32

    A.A. Smith, T.D. Johnson, D.J. Smith, J.R. Blake, J. Fluid Mech. 705, 26 (2012)

  33. 33

    https://people.sc.fsu.edu/~jburkardt

  34. 34

    C. Pozrikidis, A practical guide to boundary element methods with the software library BEMLIB (CRC Press, 2002)

  35. 35

    H. Guo, J. Nawroth, Y. Ding, E. Kanso, Phys. Fluids 26, 091901 (2014)

  36. 36

    S. Michelin, E. Lauga, J. Fluid Mech. 747, 572 (2014)

  37. 37

    S. Michelin, E. Lauga, D. Bartolo, Phys. Fluids 25, 061701 (2013)

  38. 38

    B. Ten Hagen, F. Kümmel, R. Wittkowski, D. Takagi, H. Löwen, C. Bechinger, Nat. Commun. 5, 4829 (2014)

Download references

Author information

Correspondence to Thomas D. Montenegro-Johnson.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Montenegro-Johnson, T., Michelin, S. & Lauga, E. A regularised singularity approach to phoretic problems. Eur. Phys. J. E 38, 139 (2015). https://doi.org/10.1140/epje/i2015-15139-7

Download citation

Keywords

  • Tips and Tricks