Snap-off production of monodisperse droplets

  • Solomon Barkley
  • Eric R. Weeks
  • Kari Dalnoki-Veress
Tips and Tricks

Abstract.

We introduce a novel technique to produce monodisperse droplets through the snap-off mechanism. The methodology is simple, versatile, and requires no specialized or expensive components. The droplets produced have polydispersity < 1% and can be as small as 2.5μm radius. A convenient feature is that the droplet size is constant over a 100-fold change in flow rate, while at higher flows the droplet size can be continuously adjusted.

Graphical abstract

Keywords

Tips and Tricks 

References

  1. 1.
    G.F. Christopher, S.L. Anna, J. Phys. D: Appl. Phys. 40, R319 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    R. Seemann, M. Brinkmann, T. Pfohl, S. Herminghaus, Rep. Prog. Phys. 75, 016601 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Baret, F. Kleinschmidt, A. El Harrak, A.D. Griffiths, Langmuir 25, 6088 (2009)CrossRefGoogle Scholar
  4. 4.
    K.W. Desmond, P.J. Young, D. Chen, E.R. Weeks, Soft Matter 9, 3424 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    C.A. Stan, G.F. Schneider, S.S. Shevkoplyas, M. Hashimoto, M. Ibanescu, B.J. Wiley, G.M. Whitesides, Lab Chip 9, 2293 (2009)CrossRefGoogle Scholar
  6. 6.
    S. Selimovic, F. Gobeaux, S. Fraden, Lab Chip 10, 1696 (2010)CrossRefGoogle Scholar
  7. 7.
    H. Tanaka, S. Yamamoto, A. Nakamura, Y. Nakashoji, N. Okura, N. Nakamoto, K. Tsukagoshi, M. Hashimoto, Anal. Chem. 87, 4134 (2015)CrossRefGoogle Scholar
  8. 8.
    H. Ulmke, T. Wriedt, K. Bauckhage, Chem. Engin. Technol. 24, 265 (2001)CrossRefGoogle Scholar
  9. 9.
    J. Roof, Soc. Petrol. Engin. J. 10, 85 (1970)CrossRefGoogle Scholar
  10. 10.
    R. Lenormand, C. Zarcone, A. Sarr, J. Fluid Mech. 135, 337 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    T. Peña, M. Carvalho, V. Alvarado, AIChE J. 55, 1993 (2009)CrossRefGoogle Scholar
  12. 12.
    R. Dangla, S.C. Kayi, C.N. Baroud, Proc. Natl. Acad. Sci. U.S.A. 110, 853 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    K. van Dijke, R. de Ruiter, K. Schroën, R. Boom, Soft Matter 6, 321 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    F. Malloggi, N. Pannacci, R. Attia, F. Monti, P. Mary, H. Willaime, P. Tabeling, B. Cabane, P. Poncet, Langmuir 26, 2369 (2010)CrossRefGoogle Scholar
  15. 15.
    P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2003)Google Scholar
  16. 16.
    W.A.C. Bauer, J. Kotar, P. Cicuta, R.T. Woodward, J.V. Weaver, W.T. Huck, Soft Matter 7, 4214 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    H. Duan, W. Yang, C. Li, B. Lojewski, W. Deng, Aerosol Sci. Technol. 47, 1174 (2013)CrossRefGoogle Scholar
  18. 18.
    M.K. Mulligan, J.P. Rothstein, Microfluidics nanofluidics 13, 65 (2012)CrossRefGoogle Scholar
  19. 19.
    C. Priest, S. Herminghaus, R. Seemann, Appl. Phys. Lett. 88, 024106 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    V. Chokkalingam, B. Weidenhof, M. Krämer, W.F. Maier, S. Herminghaus, R. Seemann, Lab Chip 10, 1700 (2010)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Solomon Barkley
    • 1
  • Eric R. Weeks
    • 2
  • Kari Dalnoki-Veress
    • 1
    • 3
  1. 1.Department of Physics & Astronomy and the Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada
  2. 2.Department of PhysicsEmory UniversityAtlantaUSA
  3. 3.PCT Lab, UMR CNRS 7083 Gulliver, ESPCI ParisTechPSL Research UniversityParisFrance

Personalised recommendations