Advertisement

The spatio-temporal spectrum of turbulent flows

  • P. Clark di LeoniEmail author
  • P. J. Cobelli
  • P. D. Mininni
Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract.

Identification and extraction of vortical structures and of waves in a disorganised flow is a mayor challenge in the study of turbulence. We present a study of the spatio-temporal behavior of turbulent flows in the presence of different restitutive forces. We show how to compute and analyse the spatio-temporal spectrum from data stemming from numerical simulations and from laboratory experiments. Four cases are considered: homogeneous and isotropic turbulence, rotating turbulence, stratified turbulence, and water wave turbulence. For homogeneous and isotropic turbulence, the spectrum allows identification of sweeping by the large-scale flow. For rotating and for stratified turbulence, the spectrum allows identification of the waves, precise quantification of the energy in the waves and in the turbulent eddies, and identification of physical mechanisms such as Doppler shift and wave absorption in critical layers. Finally, in water wave turbulence the spectrum shows a transition from gravity-capillary waves to bound waves as the amplitude of the forcing is increased.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    A. Celani, B.J. Devenish, A. Lanotte, L. Biferale, G. Boffetta, F. Toschi, Phys. Rev. Lett. 93, 064502 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    A.K.M. Fazle Hussain, J. Fluid Mech. 173, 303 (1986)CrossRefGoogle Scholar
  3. 3.
    M.M. Rogers, P. Moin, J. Fluid Mech. 176, 33 (1987)ADSCrossRefGoogle Scholar
  4. 4.
    P. Holmes, G. Berkooz, J.L. Lumley, Annu. Rev. Fluid Mech. 25, 539 (1993)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    J. Moehlis, T.R. Smith, P. Holmes, Nonlinear Dyn. 41, 275 (2005)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    J.D. Woods, Nature 288, 219 (1980)ADSCrossRefGoogle Scholar
  7. 7.
    C. Cambon, L. Jacquin, J. Fluid Mech. 202, 295 (1989)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    F. Waleffe, Phys. Fluids A 5, 677 (1993)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    C. Cambon, N.N. Mansour, F.S. Godeferd, J. Fluid Mech. 337, 303 (1997)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Sergey Nazarenko, Wave Turbulence, 2011 edition (Springer, 2011)Google Scholar
  11. 11.
    R.W. Stewart, Radio Sci. 4, 1269 (1969)ADSCrossRefGoogle Scholar
  12. 12.
    L.M. Smith, F. Waleffe, J. Fluid Mech. 451, 145 (2002)ADSzbMATHGoogle Scholar
  13. 13.
    L. Bourouiba, Phys. Fluids 20, 056309 (2008)CrossRefGoogle Scholar
  14. 14.
    D. Rosenberg, A. Sen, P.D. Mininni, A. Pouquet, Phys. Rev. E 86, 036319 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    R.J. Adrian, Annu. Rev. Fluid Mech. 23, 261 (1991)ADSCrossRefGoogle Scholar
  16. 16.
    V. Pagneux, A. Maurel, P. Cobelli, P. Petitjeans, Appl. Opt. 48, 380 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    A. Maurel, V. Pagneux, P. Cobelli, P. Petitjeans, N. Mordant, Phys. Rev. Lett. 103, 204301 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    G. Lagubeau, P. Cobelli, T. Bobinski, A. Maurel, V. Pagneux, P. Petitjeans, Appl. Opt. 54, 9409 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, N. Liu, J. Cope, C. Maltzahn, in IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST) (IEEE, 2012) pp. 1--11Google Scholar
  20. 20.
    A. Campagne, B. Gallet, F. Moisy, P.-P. Cortet, Phys. Rev. E 91, 043016 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Gregory P. Bewley, Daniel P. Lathrop, Leo R.M. Maas, K.R. Sreenivasan, Phys. Fluids 19, 071701 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    D.S. Zimmerman, M. Rieutord, S.A. Triana, D.P. Lathrop, Phys. Rev. E 86, 026304 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Cyril Lamriben, Pierre-Philippe Cortet, Frédéric Moisy, Leo R.M. Maas, Phys. Fluids 23, 015102 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    P. Dmitruk, S. Servidio, V. Carbone, W.H. Matthaeus, EPL 96, 55003 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    F.S. Godeferd, B. Favier, C. Cambon, Phys. Fluids 22, 015101 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    P.D. Mininni P. Dmitruk P. Clark di Leoni, P.J. Cobelli, W.H. Matthaeus, Phys. Fluids 26, 035106 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    P. Dmitruk, W.H. Matthaeus, Phys. Plasmas 16, 062304 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    E. Lindborg, G. Brethouwer, J. Fluid Mech. 586, 83 (2007)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    E.A. DAsaro, R.-C. Lien, J. Phys. Oceanogr. 30, 641 (2000)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    P. Cobelli, A. Przadka, P. Petitjeans, G. Lagubeau, V. Pagneux, A. Maurel, Phys. Rev. Lett. 107, 214503 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Quentin Aubourg, Nicolas Mordant, Phys. Rev. Lett. 114, 144501 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    P.D. Mininni, P. Clark di Leoni, P.J. Cobelli, Phys. Rev. E 89, 063025 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    Naoto Yokoyama, Masanori Takaoka, Phys. Rev. E 89, 012909 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    E. Yarom, E. Sharon, Nat. Phys. 10, 510 (2014)CrossRefGoogle Scholar
  35. 35.
    R. Meyrand, K.H. Kiyani, S. Galtier, J. Fluid Mech. 770, R1 (2015)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    P. Clark di Leoni, P.D. Mininni, Phys. Rev. E 91, 033015 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    Sergey Nazarenko, Miguel Onorato, Physica D 219, 1 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    Sergey Nazarenko, Miguel Onorato, J. Low Temp. Phys. 146, 31 (2007)CrossRefGoogle Scholar
  39. 39.
    Patricio Clark di Leoni, Pablo D. Mininni, Marc E. Brachet, arXiv: 1509.05316Google Scholar
  40. 40.
    M.L. Goldstein, F. Sahraoui, G. Belmont, L. Rezeau, J. Geophys. Res. 115, A04206 (2010)ADSGoogle Scholar
  41. 41.
    G. Belmont, A. Roux, L. Rezeau, P. Canu, P. Robert, N. Cornilleau-Wehrlin, O. Le Contel, T.D. De Wit, J.-L. Pinçon, F. Sahraoui, M.L. Goldstein, K. Kiyani, Planetary Space Sci. 59, 585 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    C.P. Escoubet, R. Schmidt, C. Russell, The Cluster and Phoenix Missions, Space science reviews (Springer, The Netherlands, 1997)Google Scholar
  43. 43.
    R.J. Morton, S. Tomczyk, R. Pinto, Nat. Commun. 6, 27 (2015)CrossRefGoogle Scholar
  44. 44.
    P.D. Mininni, D. Gómez, P. Dmitruk, Adv. Space Res. 35, 899 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    P.D. Mininni, D. Gómez, P. Dmitruk, Phys. Scr. 2005, 123 (2005)Google Scholar
  46. 46.
    R. Reddy, P. Mininni, D. Rosenberg, A. Pouquet, Parallel Comput. 37, 316 (2011)CrossRefGoogle Scholar
  47. 47.
    A. Przadka, B. Cabane, V. Pagneux, A. Maurel, P. Petitjeans, Exp. Fluids 52, 519 (2012)CrossRefGoogle Scholar
  48. 48.
    P.A. Davidson, Turbulence: an introduction for scientists and engineers (Oxford University Press, Oxford, 2004)Google Scholar
  49. 49.
    H. Tennekes, J. Fluid Mech. 67, 561 (1975)ADSzbMATHCrossRefGoogle Scholar
  50. 50.
    S. Chen, R.H. Kraichnan, Phys. Fluids A 1, 2019 (1989)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    M. Nelkin, M. Tabor, Phys. Fluids A 2, 81 (1990)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    T. Sanada, V. Shanmugasundaram, Phys. Fluids A 4, 1245 (1992)ADSCrossRefGoogle Scholar
  53. 53.
    D. Rosenberg, P.D. Mininni, A. Pouquet, J. Fluid Mech. 699, 263 (2012)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    A.C. Newell, J. Fluid Mech. 35, 255 (1969)ADSzbMATHCrossRefGoogle Scholar
  55. 55.
    C. Cambon, R. Rubinstein, F.S. Godeferd, New J. Phys. 6, 73 (2004)ADSMathSciNetCrossRefGoogle Scholar
  56. 56.
    A. Alexakis, J. Fluid Mech. 769, 46 (2015)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    D. Rosenberg, R. Marino, P.D. Mininni, A. Pouquet, EPL 102, 44006 (2013)ADSCrossRefGoogle Scholar
  58. 58.
    A. Pouquet, C. Herbert, R. Marino, J. Fluid Mech. 758, 374 (2014)ADSCrossRefGoogle Scholar
  59. 59.
    C.O. Hines, J. Atmos. Sci. 48, 1361 (1991)ADSCrossRefGoogle Scholar
  60. 60.
    K.B. Winters, E.A. DAsaro, J. Fluid Mech. 272, 255 (1994)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  61. 61.
    M.S. Longuet-Higgins, J. Fluid Mech. 16, 138 (1963)ADSMathSciNetCrossRefGoogle Scholar
  62. 62.
    N. Mordant, E. Herbert, E. Falcon, Phys. Rev. Lett. 105, 144502 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • P. Clark di Leoni
    • 1
    Email author
  • P. J. Cobelli
    • 1
  • P. D. Mininni
    • 1
  1. 1.Departamento de Física, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires and IFIBA, CONICET, Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations