Advertisement

Thermostatic and rheological responses of DPD fluid to extreme shear under modified Lees-Edwards boundary condition

  • Abouzar MoshfeghEmail author
  • Goodarz Ahmadi
  • Ahmad Jabbarzadeh
Regular Article

Abstract.

Thermodynamic, hydrodynamic and rheological interactions between velocity-dependent thermostats of Lowe-Andersen (LA) and Nosé-Hoover-Lowe-Andersen (NHLA), and modified Lees-Edwards (M-LEC) boundary condition were studied in the context of Dissipative Particle Dynamics method. Comparisons were made with original Lees-Edwards method to characterise the improvements that M-LEC offers in conserving the induced shear momentum. Different imposed shear velocities, heat bath collision/exchange frequencies and thermostating probabilities were considered. The presented analyses addressed an unusual discontinuity in momentum transfer that appeared in form of nonphysical jumps in velocity and temperature profiles. The usefulness of M-LEC was then quantified by evaluating the enhancements in obtained effective shear velocity, effective shear rate, Péclet number, and dynamic viscosity. System exchange frequency (\( \Gamma\)) with Maxwellian heat bath was found to play an important role, in that its larger values facilitated achieving higher shear rates with proper temperature control at the cost of deviation from an ideal momentum transfer. Similar dynamic viscosities were obtained under both shearing modes between LA and NHLA thermostats up to \( \Gamma = 10\), whilst about twice the range of viscosity (\(1 < \eta < 20\)) was calculated for M-LEC at larger probabilities (\(\Gamma\Delta t > 10\)%). The main benefits of this modification were to facilitate momentum flow from shear boundaries to the system bulk. In addition, it was found that there exist upper thresholds for imposing shear on the system beyond which temperature cannot be controlled properly and nonphysical jumps reappear.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992)CrossRefADSGoogle Scholar
  2. 2.
    A. Moshfegh, A. Jabbarzadeh, Simulation of semidilute suspensions by Dissipative Particle Dynamics, Paper presented at the WCCM XI-ECCM V-ECFD VI Barcelona Spain (2014)Google Scholar
  3. 3.
    E. Boek, P. Coveney, H. Lekkerkerker, P. van der Schoot, Phys. Rev. E 55, 3124 (1997)CrossRefADSGoogle Scholar
  4. 4.
    W. Pan, B. Caswell, G.E. Karniadakis, Langmuir 26, 133 (2009) DOI:10.1021/la902205x zbMATHCrossRefGoogle Scholar
  5. 5.
    D. Toomre, P. Keller, J. White, J.C. Olivo, K. Simons, J. Cell Sci. 112, 21 (1999)Google Scholar
  6. 6.
    L.R. Forrest, M.S.P. Sansom, Curr. Opin. Struct. Biol. 10, 174 (2000) DOI: 10.1016/s0959-440x(00)00066-x CrossRefGoogle Scholar
  7. 7.
    S. Yamamoto, Y. Maruyama, S.-a. Hyodo, J. Chem. Phys. 116, 5842 (2002)CrossRefADSGoogle Scholar
  8. 8.
    C. Lowe, Europhys. Lett. 47, 145 (1999)CrossRefADSGoogle Scholar
  9. 9.
    S.D. Stoyanov, R.D. Groot, J. Chem. Phys. 122, 114112 (2005)CrossRefADSGoogle Scholar
  10. 10.
    J.A. Backer, C.P. Lowe, H.C.J. Hoefsloot, P.D. Iedema, J. Chem. Phys. 122, 154503 (2005)CrossRefADSGoogle Scholar
  11. 11.
    K. Prathyusha, P. Kumar, in Proceedings of the ATIP/A* CRC Workshop on Accelerator Technologies for High-Performance Computing: Does Asia Lead the Way? (A* STAR Computational Resource Centre, 2012) p. 5Google Scholar
  12. 12.
    A. Lees, S. Edwards, J. Phys. C: Solid State Phys. 5, 1921 (1972)CrossRefADSGoogle Scholar
  13. 13.
    W.G. Hoover, D.J. Evans, R.B. Hickman, A.J. Ladd, W.T. Ashurst, B. Moran, Phys. Rev. A 22, 1690 (1980)CrossRefADSGoogle Scholar
  14. 14.
    D.J. Evans, G. Morriss, Phys. Rev. A 30, 1528 (1984)CrossRefADSGoogle Scholar
  15. 15.
    J. Cao, A.E. Likhtman, Phys. Rev. Lett. 108, 028302 (2012)CrossRefADSGoogle Scholar
  16. 16.
    A. Chatterjee, Mol. Simul. 33, 1233 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Matsumoto, T. Nishimura, ACM Trans. Model. Comput. Simul. (TOMACS) 8, 3 (1998)zbMATHCrossRefGoogle Scholar
  18. 18.
    D. Dünweg, W. Paul, Int. J. Mod. Phys. C 02, 817 (1991) DOI:10.1142/S0129183191001037 CrossRefADSGoogle Scholar
  19. 19.
    P. Español, P. Warren, Europhys. Lett. 30, 191 (1995)CrossRefADSGoogle Scholar
  20. 20.
    R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)CrossRefADSGoogle Scholar
  21. 21.
    J. Gibson, K. Chen, S. Chynoweth, Int. J. Mod. Phys. C 10, 241 (1999)zbMATHCrossRefADSGoogle Scholar
  22. 22.
    M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Clarendon, Oxford, 1987)Google Scholar
  23. 23.
    E. Peters, Europhys. Lett. 66, 311 (2004)CrossRefADSGoogle Scholar
  24. 24.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984) http://dx.doi.org/10.1063/1.448118 CrossRefADSGoogle Scholar
  25. 25.
    T. Schlick, Molecular modeling and simulation: an interdisciplinary guide, Vol 21 (Springer, 2010)Google Scholar
  26. 26.
    H. Tanaka, K. Nakanishi, N. Watanabe, J. Chem. Phys. 78, 2626 (1983)CrossRefADSGoogle Scholar
  27. 27.
    M.A. Seaton, R.L. Anderson, S. Metz, W. Smith, Mol. Simul. 39, 796 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Abouzar Moshfegh
    • 1
    Email author
  • Goodarz Ahmadi
    • 2
  • Ahmad Jabbarzadeh
    • 1
  1. 1.School of Aerospace, Mechanical and Mechatronic Eng.The University of SydneyNSWAustralia
  2. 2.Department of Mechanical and Aeronautical EngineeringClarkson UniversityPotsdamUSA

Personalised recommendations