Advertisement

Rotating turbulence under “precession-like” perturbation

  • Kartik P. IyerEmail author
  • Irene Mazzitelli
  • Fabio Bonaccorso
  • Annick Pouquet
  • Luca Biferale
Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract.

The effects of changing the orientation of the rotation axis on homogeneous turbulence is considered. We perform direct numerical simulations on a periodic box of 10243 grid points, where the orientation of the rotation axis is changed (a) at a fixed time instant (b) regularly at time intervals commensurate with the rotation time scale. The former is characterized by a dominant inverse energy cascade whereas in the latter, the inverse cascade is stymied due to the recurrent changes in the rotation axis resulting in a strong forward energy transfer and large-scale structures that resemble those of isotropic turbulence.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    C. Cambon, N.N. Mansour, F.S. Godeferd, J. Fluid Mech. 227, 303 (1997)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    N.N. Mansour, T. Shih, W.C. Reynolds, Phys. Fluids 3, 2421 (1991)CrossRefADSzbMATHGoogle Scholar
  3. 3.
    B. Saint-Michel, B. Dubrulle, L. Mari, F. Ravelet, F. Daviaud, New J. Phys. 16, 063037 (2014)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    S. Thalabard, B. Saint-Michel, E. Herbert, F. Daviaud, B. Dubrulle, New J. Phys. 17, 063006 (2015)CrossRefADSGoogle Scholar
  5. 5.
    A. Pouquet, P.D. Mininni, Philos. Trans. R. Soc. A 368, 1635 (2010)CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    A. Sen, P.D. Mininni, D. Rosenberg, A. Pouquet, Phys. Rev. E 86, 036319 (2012)CrossRefADSGoogle Scholar
  7. 7.
    H. Xia, D. Byrne, G. Falkovich, M. Shats, Nat. Phys. 7, 321 (2011)CrossRefGoogle Scholar
  8. 8.
    S. Kida, J. Fluid Mech. 680, 150 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    S. Goto, N. Ishii, S. Kida, M. Nishioka, Phys. Fluids 19, 061705 (2007)CrossRefADSGoogle Scholar
  10. 10.
    W.V.R. Malkus, Science 160, 259 (1968)CrossRefADSGoogle Scholar
  11. 11.
    S. Goto, A. Matsunaga, M. Fujiwara, M. Nishioka, S. Kida, M. Yamato, M., S. Tsuda, Phys. Fluids 26, 055107 (2014)CrossRefADSGoogle Scholar
  12. 12.
    H.P. Greenspan, The Theory of Rotating Fluids, Cambridge Monographs on Mechanics and Applied Mathematics (Breukelen Press, 1990)Google Scholar
  13. 13.
    C. Nore, J. Léorat, J.-L. Guermond, F. Luddens, J. Phys.: Conf. Ser. 318, 072034 (2011)ADSGoogle Scholar
  14. 14.
    S.A. Triana, D.S. Zimmerman, D.P. Lathrop, J. Geophys. Res. 117, B04103 (2012)ADSGoogle Scholar
  15. 15.
    B.L. Sawford, Phys. Fluids 3, 1577 (1991)CrossRefADSGoogle Scholar
  16. 16.
    O. Zeman, Phys. Fluids 6, 3221 (1994)CrossRefADSzbMATHGoogle Scholar
  17. 17.
    K.R. Sreenivasan, Phys. Fluids 7, 2778 (1995)CrossRefADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    Y. Zhou, Phys. Fluids 7, 2092 (1995)CrossRefADSzbMATHGoogle Scholar
  19. 19.
    P.D. Mininni, D. Rosenberg, A. Pouquet, J. Fluid Mech. 699, 263 (2012)CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics, Vol. 2 (MIT Press, 1975)Google Scholar
  21. 21.
    P.D. Mininni, A. Alexakis, A. Pouquet, Phys. Fluids 21, 015108 (2009)CrossRefADSGoogle Scholar
  22. 22.
    L.M. Smith, V. Yakhot, Phys. Rev. Lett. 71, 352 (1993)CrossRefADSGoogle Scholar
  23. 23.
    M. Chertkov, C. Connaughton, I. Kolokolov, V. Lebedev, Phys. Rev. Lett. 99, 084501 (2007)CrossRefADSGoogle Scholar
  24. 24.
    L. Biferale, I. Procaccia, Phys. Rep. 414, 43 (2005)CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    K. Schneider, Comput. Fluids 34, 1223 (2005)CrossRefzbMATHGoogle Scholar
  26. 26.
    F.S. Godeferd, F. Moisy, App. Mech. Rev. 67, 030802 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kartik P. Iyer
    • 1
    Email author
  • Irene Mazzitelli
    • 1
  • Fabio Bonaccorso
    • 1
  • Annick Pouquet
    • 2
    • 3
  • Luca Biferale
    • 1
  1. 1.University of Rome and INFNTor Vergata RomeItaly
  2. 2.Laboratory for Atmospheric and Space PhysicsUniversity of Colorado at BoulderBoulderUSA
  3. 3.Institute for Mathematics Applied to Geosciences (IMAGe), CISL, NCARBoulderUSA

Personalised recommendations