The importance of chemical potential in the determination of water slip in nanochannels

Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract.

We investigate the slip properties of water confined in graphite-like nanochannels by non-equilibrium molecular dynamics simulations, with the aim of identifying and analyze separately the influence of different physical quantities on the slip length. In a system under confinement but connected to a reservoir of fluid, the chemical potential is the natural control parameter: we show that two nanochannels characterized by the same macroscopic contact angle --but a different microscopic surface potential-- do not exhibit the same slip length unless the chemical potential of water in the two channels is matched. Some methodological issues related to the preparation of samples for the comparative analysis in confined geometries are also discussed.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    H. Lamb, Hydrodynamics, 6th edition (Dover, New York, 1945)Google Scholar
  2. 2.
    H. Stone, A. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004)CrossRefADSGoogle Scholar
  3. 3.
    T. Squires, S. Quake, Rev. Mod. Phys. 77, 977 (2005)CrossRefADSGoogle Scholar
  4. 4.
    M. Sbragaglia, S. Succi, Phys. Fluids 17, 093602 (2005)CrossRefADSGoogle Scholar
  5. 5.
    R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Europhys. Lett. 74, 651 (2006)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    R. Benzi, L. Biferale, M. Sbragaglia, S. Succi, F. Toschi, Phys. Rev. E 74, 021509 (2006)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    P. Tabeling, Lab on Chip 9, 2428 (2009)CrossRefGoogle Scholar
  8. 8.
    E. Lauga, M.P. Brenner, H.A. Stone, Microfluidics: The No-Slip Boundary Condition (Springer, Berlin, 2007) chapt. 19Google Scholar
  9. 9.
    L. Bocquet, E. Charlaix, Chem. Soc. Rev. 39, 1073 (2010)CrossRefGoogle Scholar
  10. 10.
    J.C. Eijkel, A. Van Den Berg, Microfluid. Nanofluid. 1, 249 (2005)CrossRefGoogle Scholar
  11. 11.
    R.B. Schoch, J. Han, P. Renaud, Rev. Mod. Phys. 80, 839 (2008)CrossRefADSGoogle Scholar
  12. 12.
    L. Bocquet, J.L. Barrat, Soft Matter 3, 685 (2007)CrossRefADSGoogle Scholar
  13. 13.
    D.M. Huang, C. Sendner, D. Horinek, R.R. Netz, L. Bocquet, Phys. Rev. Lett. 101, 1 (2008)Google Scholar
  14. 14.
    T.A. Hoa, D.V. Papavassilioua, L.L. Leeb, A. Striolo Proc. Natl. Acad. Sci. U.S.A. 108161702011Google Scholar
  15. 15.
    A. Martini, H.Y. Hsu, N. Patankar, S. Lichter, Phys. Rev. Lett. 100, 1 (2008)Google Scholar
  16. 16.
    N.V. Priezjev, S.M. Troian, J. Fluid Mech. 554, 25 (2006)MATHCrossRefADSGoogle Scholar
  17. 17.
    P.G. de Gennes, F. Brochard-Wyart, D. Quèrè, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2003)Google Scholar
  18. 18.
    L. Bocquet, J.L. Barrat, Phys. Rev. E 49, 3079 (1994)CrossRefADSGoogle Scholar
  19. 19.
    J. Petravic, P. Harrowell, J. Chem. Phys. 127, 174706 (2007)CrossRefADSGoogle Scholar
  20. 20.
    J. Hansen, B.D. Todd, P.J. Daivis, Phys. Rev. E 84, 1 (2011)Google Scholar
  21. 21.
    M. Chinappi, Applications of All-Atom Molecular Dynamics to Nanofluidics (InTech, Rijeka, Croatia, 2012) Chapt. 15Google Scholar
  22. 22.
    A.A. Pahlavan, J.B. Freund, Phys. Rev. E 83, 021602 (2011)CrossRefADSGoogle Scholar
  23. 23.
    T.A. Ho, D. Argyris, D.V. Papavassiliou, A. Striolo, Mol. Simul. 37, 172 (2011)CrossRefGoogle Scholar
  24. 24.
    B.F. Qiao, M. Sega, C. Holm, Phys. Chem. Chem. Phys. 14, 11425 (2012)CrossRefGoogle Scholar
  25. 25.
    P.A. Thompson, S.M. Troian, Nature 389, 360 (1997)CrossRefADSGoogle Scholar
  26. 26.
    N.V. Priezjev, J. Chem. Phys. 127, 144708 (2007)CrossRefADSGoogle Scholar
  27. 27.
    M. Sega, M. Sbragaglia, L. Biferale, S. Succi, Soft Matter 9, 8526 (2013)CrossRefADSGoogle Scholar
  28. 28.
    C. Sendner, D. Horinek, L. Bocquet, R.R. Netz, Langmuir 25, 10768 (2009)CrossRefGoogle Scholar
  29. 29.
    J.L. Barrat, L. Bocquet, Faraday Discuss. 112, 119 (1999)CrossRefADSGoogle Scholar
  30. 30.
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput. 4, 435 (2008)CrossRefGoogle Scholar
  31. 31.
    H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987)CrossRefGoogle Scholar
  32. 32.
    U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, J. Chem. Phys. 103, 8577 (1995)CrossRefADSGoogle Scholar
  33. 33.
    I.C. Yeh, M.L. Berkowitz, J. Chem. Phys. 111, 3155 (1999)CrossRefADSGoogle Scholar
  34. 34.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford Science Publications, 1st edition (Clarendon Press, Oxford, 1987).Google Scholar
  35. 35.
    S. Miyamoto, P.A. Kollman, J. Comput. Chem. 13, 952 (1992)CrossRefGoogle Scholar
  36. 36.
    W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hunenberger, P. Kruger, A.E. Mark, W.R.P. Scott, I.G. Tironi, Biomolecular Simulation: The GROMOS96 Manual and User Guide (vdf Hochschulverlag AG an der ETH Zurich and BIOMOS b.v., Zurich, Groningen, 1996)Google Scholar
  37. 37.
    T. Werder, J. Walther, R. Jaffe, T. Halicioglu, P. Koumoutsakos, J. Phys. Chem. B 107, 1345 (2003)CrossRefGoogle Scholar
  38. 38.
    J.S. Rowlinson, B. Widom, Molecular Theory of Capillarity (Dover, New York, 2003)Google Scholar
  39. 39.
    B. Widom, J. Chem. Phys. 39, 2802 (1963)CrossRefADSGoogle Scholar
  40. 40.
    B. Widom, J. Stat. Phys. 19, 563 (1978)CrossRefADSGoogle Scholar
  41. 41.
    G. Job, F. Herrmann, Eur. J. Phys. 27, 353 (2006)CrossRefGoogle Scholar
  42. 42.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics, 2nd edition (Pergamon Press, Oxford, 1987)Google Scholar
  43. 43.
    M. Chinappi, C. Casciola, Phys. Fluids 22, 042003 (2010)CrossRefADSGoogle Scholar
  44. 44.
    N.V. Priezjev, J. Chem. Phys 135, 204704 (2011)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of Computational PhysicsUniversity of ViennaViennaAustria
  2. 2.Department of Physics and INFNUniversity of “Tor Vergata”RomeItaly
  3. 3.Istituto per le Applicazioni del Calcolo CNRRomeItaly

Personalised recommendations