Advertisement

Sliding droplets of Xanthan solutions: A joint experimental and numerical study

  • Silvia VaragnoloEmail author
  • Giampaolo Mistura
  • Matteo Pierno
  • Mauro Sbragaglia
Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract.

We have investigated the sliding of droplets made of solutions of Xanthan, a stiff rodlike polysaccharide exhibiting a non-Newtonian behavior, notably characterized by a shear thinning viscosity accompanied by the emergence of normal stress difference as the polymer concentration is increased. These experimental results are quantitatively compared with those of Newtonian fluids (water). The impact of the non-Newtonian behavior on the sliding process was shown through the relation between the average dimensionless velocity (i.e. the capillary number) and the dimensionless volume forces (i.e. the Bond number). To this aim, it is needed to define operative strategies to compute the capillary number for the shear thinning fluids and compare with the corresponding Newtonian case. The resulting capillary number for the Xanthan solutions scales linearly with the Bond number at small inclinations, as well known for Newtonian fluids, while it shows a plateau as the Bond number is increased. Experimental data were complemented with lattice Boltzmann numerical simulations of sliding droplets, aimed to disentangle the specific contribution of shear thinning and elastic effects on the sliding behavior. In particular the deviation from the linear (Newtonian) trend is more likely attributed to the emergence of normal stresses inside the non-Newtonian droplet.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    N.J. Cira, A. Benusiglio, M. Prakash, Nature 519, 446 (2015)CrossRefADSGoogle Scholar
  2. 2.
    D. ’t Mannetje, S. Ghosh, R. Lagraauw, S. Otten, A. Pit, C. Berendsen, J. Zeegers, D. van den Ende, F. Mugele, Nat. Commun. 5, 3559 (2014)CrossRefGoogle Scholar
  3. 3.
    M.J. Jebrail, H. Yang, J.M. Mudrik, N.M. Lafrenière, C. McRoberts, O.Y. Al-Dirbashi, L. Fisher, P. Chakraborty, A.R. Wheeler, Lab on a Chip 11, 3218 (2011)CrossRefGoogle Scholar
  4. 4.
    D.K.N. Sinz, A.A. Darhuber, Lab on a Chip 12, 705 (2012)CrossRefGoogle Scholar
  5. 5.
    H. Gau, S. Herminghaus, P. Lenz, R. Lipowsky, Science 283, 46 (1999)CrossRefADSGoogle Scholar
  6. 6.
    G. Lagubeau, M. Le Merrer, C. Clanet, D. Quéré, Nat. Phys. 7, 395 (2011)CrossRefGoogle Scholar
  7. 7.
    K. Piroird, B.D. Texier, C. Clanet, D. Quéré, Physics Fluids (1994-present) 25, 032108 (2013)CrossRefADSGoogle Scholar
  8. 8.
    P. Sartori, D. Quagliati, S. Varagnolo, M. Pierno, G. Mistura, F. Magaletti, C.M. Casciola, New J. Phys. 17, 113017 (2015)CrossRefADSGoogle Scholar
  9. 9.
    S.F. Kistler, P.M. Schweizer, Liquid Film Coating (Chapman and Hall, London, 1997)Google Scholar
  10. 10.
    P.G. De Gennes, Rev. Mod. Phys. 57, 827 (1985)CrossRefADSGoogle Scholar
  11. 11.
    C. Furmidge, J. Colloid Interface Sci. 17, 309 (1962)CrossRefGoogle Scholar
  12. 12.
    C. Huh, C. Scriven, J. Colloid Interface Sci. 35, 85 (1971)CrossRefGoogle Scholar
  13. 13.
    J. Buehrle, S. Herminghaus, F. Mugele, Langmuir 18, 9771 (2002)CrossRefGoogle Scholar
  14. 14.
    R. Seemann, M. Brinkmann, E.J. Kramer, F.F. Lange, R. Lipowsky, Proc. Nat. Acad. Sci. U.S.A. 102, 1848 (2005)CrossRefADSGoogle Scholar
  15. 15.
    T. Podgorski, J.M. Flesselles, L. Limat, Phys. Rev. Lett. 87, 036102 (2001)CrossRefADSGoogle Scholar
  16. 16.
    H. Kim, H. Lee, B. Kang, J. Colloid Interface Sci. 247, 372 (2002)CrossRefGoogle Scholar
  17. 17.
    E. Rio, A. Daerr, B. Andreotti, L. Limat, Phys. Rev. Lett. 94, 024503 (2005)CrossRefADSGoogle Scholar
  18. 18.
    S. Varagnolo, D. Ferraro, P. Fantinel, M. Pierno, G. Mistura, G. Amati, L. Biferale, M. Sbragaglia, Phys. Rev. Lett. 111, 066101 (2013)CrossRefADSGoogle Scholar
  19. 19.
    M. Sbragaglia, L. Biferale, G. Amati, S. Varagnolo, D. Ferraro, G. Mistura, M. Pierno, Phys. Rev. E 89, 012406 (2014)CrossRefADSGoogle Scholar
  20. 20.
    S. Varagnolo, V. Schiocchet, D. Ferraro, M. Pierno, G. Mistura, M. Sbragaglia, A. Gupta, G. Amati, Langmuir 30, 2401 (2014)CrossRefGoogle Scholar
  21. 21.
    R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of polymeric liquids (J. Wiley & Sons, 1987)Google Scholar
  22. 22.
    M. Herrchen, H. Oettinger, J. Non-Newton. Fluid Mech. 68, 17 (1997)CrossRefGoogle Scholar
  23. 23.
    A. Lindner, J. Vermant, D. Bonn, Physica A 319, 125 (2003)CrossRefADSGoogle Scholar
  24. 24.
    P. Arratia, L.A. Cramer, J. Gollub, D.J. Durian, New J. Phys. 11, 115006 (2009)CrossRefADSGoogle Scholar
  25. 25.
    Y. Wei, E. Ramé, L. Walker, S. Garoff, J. Phys.: Condens. Matter 21, 464126 (2009)ADSGoogle Scholar
  26. 26.
    Y. Wei, G. Seevaratnam, S. Garoff, E. Ramé, L. Walker, J. Colloid Interface Sci. 313, 274 (2007)CrossRefGoogle Scholar
  27. 27.
    D.E. Weidner, L.W. Schwartz, Phys. Fluids 6, 3535 (1994)zbMATHCrossRefADSGoogle Scholar
  28. 28.
    L. Ansini, L. Giacomelli, Nonlinearity 15, 2147 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  29. 29.
    A. Carré, P. Woehl, Langmuir 18, 3600 (2002)CrossRefGoogle Scholar
  30. 30.
    A. Carré, F. Eustache, C. R. Acad. Sci. Paris 325, 709 (1997)Google Scholar
  31. 31.
    A. Carré, F. Eustache, Langmuir 16, 2936 (2000)CrossRefGoogle Scholar
  32. 32.
    S. Rafai, D. Bonn, A. Boudaoud, J. Fluid Mech. 513, 77 (2004)zbMATHCrossRefADSGoogle Scholar
  33. 33.
    S. Rafai, D. Bonn, Physica A 358, 58 (2005)CrossRefADSGoogle Scholar
  34. 34.
    L.H. Tanner, J. Phys. D 12, 1473 (1979)CrossRefADSGoogle Scholar
  35. 35.
    A. Baudaud, Eur. Phys. J. E 22, 107 (2007)CrossRefGoogle Scholar
  36. 36.
    J.S. Ro, G. Homsy, J. Non-Newton. Fluid Mech. 57, 203 (1995)CrossRefGoogle Scholar
  37. 37.
    A. Borkar, J. Tsamopoulos, S. Gupta, R. Gupta, Phys. Fluids 6, 3539 (1994)CrossRefADSGoogle Scholar
  38. 38.
    M. Bajaj, J. Prakash, M. Pasquali, J. Non-Newton. Fluid Mech. 149, 104 (2008)zbMATHCrossRefGoogle Scholar
  39. 39.
    A. Abedijaberi, G. Bhatara, E. Shaqfeh, B. Khomami, J. Non-Newton. Fluid Mech. 166, 614 (2011)zbMATHCrossRefGoogle Scholar
  40. 40.
    N. Fraysse, G. Homsy, Phys. Fluids 6, 1491 (1994)CrossRefADSGoogle Scholar
  41. 41.
    G. Seevaratnam, L. Walker, E. Ramé, S. Garoff, J. Colloid Interface Sci. 284, 265 (2005)CrossRefGoogle Scholar
  42. 42.
    G. Seevaratnam, Y. Suo, E. Ramé, L. Walker, S. Garoff, Phys. Fluids 19, 012103 (2007)CrossRefADSGoogle Scholar
  43. 43.
    P. Yue, J.J. Feng, J. Non-Newton. Fluid Mech. 189, 8 (2012)CrossRefGoogle Scholar
  44. 44.
    J. Han, C. Kim, J. Non-Newton. Fluid Mech. 202, 120 (2013)CrossRefGoogle Scholar
  45. 45.
    J. Han, C. Kim, Rheol Acta 53, 55 (2014)CrossRefGoogle Scholar
  46. 46.
    H. Kusumaatmaja, J. Leopoldes, A. Dupuis, J. Yeomans, Europhys. Lett. 73, 740 (2006)CrossRefADSGoogle Scholar
  47. 47.
    H. Kusumaatmaja, J. Yeomans, Langmuir 23, 956 (2007)CrossRefGoogle Scholar
  48. 48.
    H.A. Stone, Annu. Rev. Fluid Mech. 26, 65 (1994)CrossRefADSGoogle Scholar
  49. 49.
    V. Kheyfets, S. Kieweg, J. Biomech. Engin. 135, 061009 (2013)CrossRefGoogle Scholar
  50. 50.
    G. Ahmed, M. Sellier, Y. Lee, M. Jermy, T. M., Colloids Surf. A: Physicochem. Eng. Aspects 432, 2 (2013)CrossRefGoogle Scholar
  51. 51.
    L.W. Schwartz, J. Charpin, S. O’Brien, in XXII ICTAM, 25-29 august 2008, Adelaide, Australia (2008)Google Scholar
  52. 52.
    G. Perazzo, G. Gratton, Phys. Rev. E 67, 016307 (2003)CrossRefADSGoogle Scholar
  53. 53.
    G. Perazzo, G. Gratton, Phys. Fluids 17, 013102 (2005)MathSciNetCrossRefADSGoogle Scholar
  54. 54.
    K. Rajagopal, G. Saccomandi, L. Vergori, J. Fluid. Mech. 706, 173 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar
  55. 55.
    H. Morita, S. Plog, T. Kajiya, D. M., J. Phys. Soc. Jpn. 78, 014804 (2009)CrossRefADSGoogle Scholar
  56. 56.
    P.T. Callaghan, A.M. Gil, Macromolecules 33, 4116 (2000)CrossRefADSGoogle Scholar
  57. 57.
    P.J. Whitcomb, C.W. Macosko, J. Rheol. 22, 493 (1978)CrossRefADSGoogle Scholar
  58. 58.
    A. Helmreich, J. Vorwerk, R. Steger, M. Muller, P.O. Brunn, Chem. Engin. J. Biochem. Engin. J. 59, 111 (1995)CrossRefGoogle Scholar
  59. 59.
    D. Bonn, J. Meunier, Phys. Rev. Lett. 79, 2662 (1997)CrossRefADSGoogle Scholar
  60. 60.
    M. Zirnsak, D.V. Boger, V. Tirtaatmadja, J. Rheol. 43, 627 (1999)CrossRefADSGoogle Scholar
  61. 61.
    F. Varela Lopez, L. Pauchard, M. Rosen, M. Rabaud, J. Non-Newton. Fluid Mech. 103, 123 (2002)zbMATHCrossRefGoogle Scholar
  62. 62.
    J. Stokes, L. Macakova, A. Chojnicka-Paszun, C. DeKruif, H. Harmen, H. De Jong, Langmuir 27, 3474 (2011)CrossRefGoogle Scholar
  63. 63.
    R.K. Gupta, M. Ryan, S. T., J. Rheol. 30, 046312 (1986)Google Scholar
  64. 64.
    D.M. Jones, K. Walters, P.R. Williams, Rheol. Acta 26, 20 (1987)CrossRefGoogle Scholar
  65. 65.
    R.J. Binnington, D.V. Boger, J. Non-Newton. Fluid Mech. 26, 115 (1987)CrossRefGoogle Scholar
  66. 66.
    M.S. Chai, Ph.D. thesis, University of Melbourne, Australia (1990)Google Scholar
  67. 67.
    H.W. Bewersdorff, R.P. Singh, Rheol. Acta 27, 617 (1988)CrossRefGoogle Scholar
  68. 68.
    D. Won, C. Kim, J. Non-Newton. Fluid Mech. 117, 141 (2004)CrossRefGoogle Scholar
  69. 69.
    T. Toth, D. Ferraro, E. Chiarello, M. Pierno, G. Mistura, G. Bissacco, C. Semprebon, Langmuir 27, 4742 (2011)CrossRefGoogle Scholar
  70. 70.
    D. Ferraro, C. Semprebon, T. Toth, E. Locatelli, M. Pierno, G. Mistura, M. Brinkmann, Langmuir 28, 13919 (2012)CrossRefGoogle Scholar
  71. 71.
    P. Yue, J. Feng, C. Liu, J. Shen, J. Fluid Mech. 515, 293 (2004)zbMATHMathSciNetCrossRefADSGoogle Scholar
  72. 72.
    P. Yue, J.J. Feng, C. Liu, J. Shen, J. Non-Newton. Fluid Mech. 129, 163 (2005)zbMATHCrossRefGoogle Scholar
  73. 73.
    P. Yue, C. Zhou, J.J. Feng, C.F. Ollivier-Gooch, H.H. Hu, J. Comput. Phys. 219, 47 (2006)zbMATHMathSciNetCrossRefADSGoogle Scholar
  74. 74.
    P. Yue, C. Zhou, J.J. Feng, Phys. Fluids 18, 102102 (2006)CrossRefADSGoogle Scholar
  75. 75.
    D. Zhou, P. Yue, J.J. Feng, J. Rheol. 52, 469 (2008)CrossRefADSGoogle Scholar
  76. 76.
    N. Moradi, F. Varnik, I. Steinbach, EPL 95, 44003 (2011)CrossRefADSGoogle Scholar
  77. 77.
    X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)CrossRefADSGoogle Scholar
  78. 78.
    X. Shan, H. Chen, Phys. Rev. E 49, 2941 (1994)CrossRefADSGoogle Scholar
  79. 79.
    A. Gupta, M. Sbragaglia, A. Scagliarini, J. Comput. Phys. 291, 177 (2015)MathSciNetCrossRefADSGoogle Scholar
  80. 80.
    S. Gabbanelli, G. Drazer, J. Koplik, Phys. Rev. E 72, 046312 (2005)CrossRefADSGoogle Scholar
  81. 81.
    C. Wagner, Y. Amarouchene, D. Bonn, J. Eggers, Phys. Rev. Lett. 95, 164504 (2005)CrossRefADSGoogle Scholar
  82. 82.
    A. Gupta, M. Sbragaglia, Phys. Rev. E 90, 023305 (2014)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Silvia Varagnolo
    • 1
    Email author
  • Giampaolo Mistura
    • 1
  • Matteo Pierno
    • 1
  • Mauro Sbragaglia
    • 2
  1. 1.Dipartimento di Fisica e Astronomia “G. Galilei” and CNISMUniversità di PadovaPadovaItaly
  2. 2.Department of Physics and INFNUniversity of “Tor Vergata”RomeItaly

Personalised recommendations