Advertisement

Disentangling the triadic interactions in Navier-Stokes equations

  • Ganapati SahooEmail author
  • Luca Biferale
Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract

We study the role of helicity in the dynamics of energy transfer in a modified version of the Navier-Stokes equations with explicit breaking of the mirror symmetry. We select different set of triads participating in the dynamics on the basis of their helicity content. In particular, we remove the negative helically polarized Fourier modes at all wave numbers except for those falling on a localized shell of wave number, \(|k| \sim k_{m}\). Changing km to be above or below the forcing scale, kf, we are able to assess the energy transfer of triads belonging to different interaction classes. We observe that when the negative helical modes are present only at a wave number smaller than the forced wave numbers, an inverse energy cascade develops with an accumulation of energy on a stationary helical condensate. Vice versa, when negative helical modes are present only at a wave number larger than the forced wave numbers, a transition from backward to forward energy transfer is observed in the regime when the minority modes become energetic enough.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    A.N. Kolmogorov, Dokl. Akad. Nauk. SSSR 32, 19 (1941).ADSGoogle Scholar
  2. 2.
    U. Frisch, Turbulence: the legacy of A. N. Kolmogorov (Cambridge University Press, Cambridge, UK, 1995).Google Scholar
  3. 3.
    P.D. Mininni, A. Alexakis, A. Pouquet, Phys. Fluids 21, 015108 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    E. Deusebio, E. Lindborg, J. Fluid Mech. 755, 654 (2014).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    A. Celani, S. Musacchio, D. Vincenzi, Phys. Rev. Lett. 104, 184506 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    A. Brandenburg, Astrophys. J. 550, 824 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    U. Frisch, A. Pomyalov, I. Procaccia, S.S. Ray, Phys. Rev. Lett. 108, 074501 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    F. Waleffe, Phys. Fluids A 4, 350 (1992).ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Constantin, A. Majda, Commun. Math. Phys. 115, 435 (1988).ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    L. Biferale, S. Musacchio, F. Toschi, J. Fluid Mech. 730, 309 (2013).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    L. Biferale, E.S. Titi, J. Stat. Phys. 151, 1089 (2013).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    H.K. Moffatt, J. Fluid Mech. 35, 117 (1969).ADSCrossRefGoogle Scholar
  13. 13.
    H.K. Moffatt, A. Tsinober, Annu. Rev. Fluid Mech. 24, 281 (1992).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    A. Brissaud, U. Frisch, J. Leorat, M. Lesieur, M. Mazure, Phys. Fluids 16, 1366 (1973).ADSCrossRefGoogle Scholar
  15. 15.
    C.E. Laing, R.L. Ricca, D.W.L. Summers, Sci. Rep. 5, 9224 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    P.D. Ditlevsen, Phys. Fluids 9, 1482 (1997).ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    D.D. Holm, R.M. Kerr, Phys. Fluids 19, 025101 (2007).ADSCrossRefGoogle Scholar
  18. 18.
    R. Benzi, L. Biferale, R.M. Kerr, E. Trovatore, Phys. Rev. E 53, 3541 (1996).ADSCrossRefGoogle Scholar
  19. 19.
    Q. Chen, S. Chen, G.L. Eyink, Phys. Fluids 15, 361 (2003).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    Q. Chen, S. Chen, G.L. Eyink, D.D. Holm, Phys. Rev. Lett. 90, 214503 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    E. Herbert, F. Daviaud, B. Dubrulle, S. Nazarenko, A. Naso, EPL 100, 44003 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    D. Biskamp, Magnetohydrodynamic Turbulence (Cambridge University Press, Cambridge, UK, 2003).Google Scholar
  23. 23.
    J. Baerenzung, H. Politano, Y. Ponty, A. Pouquet, Phys. Rev. E 77, 046303 (2008).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    P.D. Mininni, A. Pouquet, Phys. Fluids 22, 035105 (2010).ADSCrossRefGoogle Scholar
  25. 25.
    L. Biferale, S. Musacchio, F. Toschi, Phys. Rev. Lett. 108, 164501 (2012).ADSCrossRefGoogle Scholar
  26. 26.
    G. Sahoo, F. Bonaccorsso, L. Biferale, preprint, arXiv:1506.04906 (2015).
  27. 27.
    C. Herbert, Phys. Rev. E 89, 013010 (2014).ADSCrossRefGoogle Scholar
  28. 28.
    R.H. Kraichnan, J. Fluid Mech. 47, 525 (1971).ADSCrossRefGoogle Scholar
  29. 29.
    K. Seshasayanan, S.J. Benavides, A. Alexakis, Phys. Rev. E 90, 051003 (2014).ADSCrossRefGoogle Scholar
  30. 30.
    K. Seshasayanan, A. Alexakis, preprint, arXiv:1509.02334 (2015).
  31. 31.
    H.K. Moffatt, J. Fluid Mech. 741, R3 (2014).ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    R.H. Kraichnan, Phys. Fluids 10, 1417 (1967).ADSCrossRefGoogle Scholar
  33. 33.
    G. Boffetta, S. Musacchio, Phys. Rev. E 82, 016307 (2010).ADSCrossRefGoogle Scholar
  34. 34.
    M. Chertkov, C. Connaughton, I. Kolokolov, V. Lebedev, Phys. Rev. Lett. 99, 084501 (2007).ADSCrossRefGoogle Scholar
  35. 35.
    M. Cencini, P. Muratore-Ginanneschi, A. Vulpiani, Phys. Rev. Lett. 107, 174502 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    H.J.H. Clercx, G.J.F. van Heijst, Appl. Mech. Rev. 62, 020802 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    J. Laurie, G. Boffetta, G. Falkovich, I. Kolokolov, V. Lebedev, Phys. Rev. Lett. 113, 254503 (2014).ADSCrossRefGoogle Scholar
  38. 38.
    R. Stepanov, E. Golbraikh, P. Frick, A. Shestakov, preprint, arXiv:1508.07236 (2015).
  39. 39.
    M. Kessar, F. Plunian, R. Stepanov, G. Balarac, preprint, arXiv:1509.02644 (2015).

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Physics and INFNUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations