Complex instability of axially compressed tubular lipid membrane with controlled spontaneous curvature

  • I. Yu. Golushko
  • S. B. Rochal
  • V. L. Lorman
Regular Article


Tubular lipid membranes (TLMs) are formed by an external pulling force from artificial or biological bilayer vesicles and can be subsequently stabilized by incorporating proteins or amphiphilic polymers into the lipid bilayer. The arising spontaneous curvature of the lipid sheet allows switching off the pulling force without TLM destabilization. However, here we show that during this process two different thermal fluctuation modes drastically increase their amplitudes making fluctuations of the TLM much greater than its radius. Due to the system’s proximity to the critical fluctuation point, a weak axial compressive force is sufficient to destabilize the TLM. Its absolute value is shown to be much smaller than that of the pulling force required for the initial lipid nanotube formation. Induced complex instability was studied in the frame of Landau phase transition theory. The process involves two consecutive second-order phase transitions and leads to the tube deformation combining annular corrugation with completely unconventional chiral buckling.

Graphical abstract


Living systems: Biological Matter 


  1. 1.
    R. Gennis, Biomembranes: Molecular Structure and Functions (Springer-Verlag, New York, Inc., 1989).Google Scholar
  2. 2.
    R.E. Waugh, J. Song, S. Svetina, B. Zeks, Biophys. J. 61, 974 (1992).CrossRefADSGoogle Scholar
  3. 3.
    R.M. Hochmuth, H.C. Wiles, E.A. Evans, J.T. McCown, Biophys. J. 39, 83 (1982).CrossRefADSGoogle Scholar
  4. 4.
    L. Bo, R.E. Waugh, Biophys. J. 55, 509 (1989).CrossRefADSGoogle Scholar
  5. 5.
    A. Roux, G. Koster, M. Lenz, B. Sorre, J.B. Manneville, P. Nassoy, P. Bassereau, Proc. Natl. Acad. Sci. U.S.A. 107, 4141 (2010).CrossRefADSGoogle Scholar
  6. 6.
    A. Roux, D. Cuvelier, P. Nassoy, J. Prost, P. Bassereau, B. Goud, EMBO J. 24, 1537 (2005).CrossRefGoogle Scholar
  7. 7.
    B. Sorre, A. Callan-Jones, J. Manzi, B. Goud, J. Prost, P. Bassereau, A. Roux, Proc. Natl. Acad. Sci. U.S.A. 109, 173 (2012).CrossRefADSGoogle Scholar
  8. 8.
    G. Koster, M. VanDuijin, B. Hofs, Proc. Natl. Acad. Sci. U.S.A. 100, 15583 (2003).CrossRefADSGoogle Scholar
  9. 9.
    S. Monnier, S.B. Rochal, A.Parmeggiani, V.L. Lorman, Phys. Rev. Lett. 105, 028102 (2010).CrossRefADSGoogle Scholar
  10. 10.
    J.-B. Fournier, P. Galatola, Phys. Rev. Lett. 98, 018103 (2007).CrossRefADSGoogle Scholar
  11. 11.
    M.V. Avramenko, I.Yu. Golushko, A.E. Myasnikova, S.B. Rochal, Physica E 68, 133 (2015).CrossRefADSGoogle Scholar
  12. 12.
    L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 7, Theory of Elasticity, 2nd edition (Pergamon, New York, 1986).Google Scholar
  13. 13.
    R. Bar-Ziv, E. Moses, Phys. Rev. Lett. 73, 1392 (1994).CrossRefADSGoogle Scholar
  14. 14.
    R. Bar-Ziv, T. Tlusty, E. Moses, Phys. Rev. Lett. 79, 1158 (1997).CrossRefADSGoogle Scholar
  15. 15.
    E. Hannezo, J. Prost, J.F. Joanny, Phys. Rev. Lett. 109, 018101 (2012).CrossRefADSGoogle Scholar
  16. 16.
    W. Helfrich, Z. Naturforsch. 28, 693 (1973).MathSciNetGoogle Scholar
  17. 17.
    P.B. Canham, J. Theor. Biol. 26, 61 (1970).CrossRefGoogle Scholar
  18. 18.
    I. Derényi, F. Jülicher, J. Prost, Phys. Rev. Lett. 88, 209901 (2002).CrossRefADSGoogle Scholar
  19. 19.
    K.L. Gurin, V.V. Lebedev, A.R. Muratov, JETP 83, 321 (1996).ADSGoogle Scholar
  20. 20.
    T.R. Powers, Rev. Mod. Phys. 82, 1607 (2010).CrossRefADSGoogle Scholar
  21. 21.
    M. Deserno, Chem. Phys. Lipids. 185, 11 (2015).CrossRefGoogle Scholar
  22. 22.
    D.J. Bukman, J.H. Yao, M. Wortis, Phys. Rev. E 54, 5463 (1996).CrossRefADSGoogle Scholar
  23. 23.
    L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, Vol. 5, Statistical Physics (Pergamon, New York, 1980).Google Scholar
  24. 24.
    J.-C. Tolédano, P. Tolédano, The Landau Theory of Phase Transitions (World Scientific Publishing Co, Singapore, 1987).Google Scholar
  25. 25.
    S.P. Thimoshenko, J.M. Gere, Theory of Elastic Stability, 2nd edition (McGraw-Hill Book Co., Inc., New York, 1961).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • I. Yu. Golushko
    • 1
  • S. B. Rochal
    • 1
  • V. L. Lorman
    • 2
  1. 1.Faculty of PhysicsSouthern Federal UniversityRostov-on-DonRussia
  2. 2.Laboratoire Charles Coulomb, UMR 5221 CNRSUniversité de MontpellierMontpellier Cedex 5France

Personalised recommendations