Insertion and self-diffusion of a monotopic protein, the Aquifex aeolicus sulfide quinone reductase, in supported lipid bilayers

  • Frédéric Harb
  • Laurence Prunetti
  • Marie-Thérèse Giudici-Orticoni
  • Marianne Guiral
  • Bernard Tinland
Regular Article

Abstract

Monotopic proteins constitute a class of membrane proteins that bind tightly to cell membranes, but do not span them. We present a FRAPP (Fluorescence Recovery After Patterned Photobleaching) study of the dynamics of a bacterial monotopic protein, SQR (sulfide quinone oxidoreductase) from the thermophilic bacteria Aquifex aeolicus, inserted into two different types of lipid bilayers (EggPC: L-α-phosphatidylcholine (Egg, Chicken) and DMPC: 1,2-dimyristoyl-sn-glycero-3-phosphocholine) supported on two different types of support (mica or glass). It sheds light on the behavior of a monotopic protein inside the bilayer. The insertion of SQR is more efficient when the bilayer is in the fluid phase than in the gel phase. We observed diffusion of the protein, with no immobile fraction, and deduced from the diffusion coefficient measurements that the resulting inserted object is the same whatever the incubation conditions, i.e. homogeneous in terms of oligomerization state. As expected, the diffusion coefficient of the SQR is smaller in the gel phase than in the fluid phase. In the supported lipid bilayer, the diffusion coefficient of the SQR is smaller than the diffusion coefficient of phospholipids in both gel and fluid phase. SQR shows a diffusion behavior different from the transmembrane protein α-hemolysin, and consistent with its monotopic character. Preliminary experiments in the presence of the substrate of SQR, DecylUbiquinone, an analogue of quinone, component of transmembrane electrons transport systems of eukaryotic and prokaryotic organisms, have been carried out. Finally, we studied the behavior of SQR, in terms of insertion and diffusion, in bilayers formed with lipids from Aquifex aeolicus. All the conclusions that we have found in the biomimetic systems applied to the biological system.

Graphical abstract

Keywords

Living systems: Biomimetic Systems 

References

  1. 1.
    J.P. Overington, B. Al-Lazikani, A.L. Hopkins, Nature Rev. Drug discovery 5, 993 (2006).CrossRefGoogle Scholar
  2. 2.
    G. Blobel, Proc. Natl. Acad. Sci. U.S.A. 77, 1496 (1980).CrossRefADSGoogle Scholar
  3. 3.
    P.J. Loll, D. Picot, R.M. Garavito, Nat. Struct. Biol. 2, 637 (1995).CrossRefGoogle Scholar
  4. 4.
    R.G. Kurumbail, A.M. Stevens, J.K. Gierse, J.J. McDonald, R.A. Stegeman, J.Y. Pak, D. Gildehaus, J.M. Miyashiro, T.D. Penning, K. Seibert, P.C. Isakson, W.C. Stallings, Nature 384, 644 (1996).CrossRefADSGoogle Scholar
  5. 5.
    P.J. Loll, D. Picot, O. Ekabo, R.M. Garavito, Biochemistry 35, 7330 (1996).CrossRefGoogle Scholar
  6. 6.
    K. Gupta, B.S. Selinsky, C.J. Kaub, A.K. Katz, P.J. Loll, J. Mol. Biol. 335, 503 (2004).CrossRefGoogle Scholar
  7. 7.
    C. Luong, A. Miller, J. Barnett, J. Chow, C. Ramesha, M.F. Browner, Nat. Struct. Biol. 3, 927 (1996).CrossRefGoogle Scholar
  8. 8.
    M. Marcia, U. Ermler, G. Peng, H. Michel, Proteins 78, 1073 (2010).CrossRefGoogle Scholar
  9. 9.
    L.H. Gregersen, D.A. Bryant, N.U. Frigaard, Front Microbiol. 2, 116 (2011).Google Scholar
  10. 10.
    C. Griesbeck, M. Schutz, T. Schodl, S. Bathe, L. Nausch, N. Mederer, M. Vielreicher, G. Hauska, Biochemistry 41, 11552 (2002).CrossRefGoogle Scholar
  11. 11.
    C. Griesbeck, G. Hauska, M. Schutz, Recent Res. Devel. Microbiol. 4, 179 (2000).Google Scholar
  12. 12.
    M. Marcia, J.D. Langer, D. Parcej, V. Vogel, G. Peng, H. Michel, Biochim. Biophys. Acta 1798, 2114 (2010).CrossRefGoogle Scholar
  13. 13.
    T. Nubel, C. Klughammer, R. Huber, G. Hauska, M. Schutz, Arch. Microbiol. 173, 233 (2000).CrossRefGoogle Scholar
  14. 14.
    L. Prunetti, P. Infossi, M. Brugna, C. Ebel, M.T. Giudici-Orticoni, M. Guiral, J. Biol. Chem. 285, 41815 (2010).CrossRefGoogle Scholar
  15. 15.
    M. Guiral, L. Prunetti, C. Aussignargues, A. Ciaccafava, P. Infossi, M. Ilbert, E. Lojou, M.T. Giudici-Orticoni, Advances in Microb. Physiol. 61, 125 (2012).CrossRefGoogle Scholar
  16. 16.
    M. Marcia, U. Ermler, G. Peng, H. Michel, Proc. Natl. Acad. Sci. U.S.A. 106, 9625 (2009).CrossRefADSGoogle Scholar
  17. 17.
    M. Frick, K. Schmidt, B.J. Nichols, Curr. Biol. 17, 462 (2007).CrossRefGoogle Scholar
  18. 18.
    P.W. Fowler, K. Balali-Mood, S. Deol, P.V. Coveney, M.S. Sansom, Biochemistry 46, 3108 (2007).CrossRefGoogle Scholar
  19. 19.
    A.D. Dupuy, D.M. Engelman, Proc. Natl. Acad. Sci. U.S.A. 105, 2848 (2008).CrossRefADSGoogle Scholar
  20. 20.
    S.M. van den Wildenberg, Y.J. Bollen, E.J. Peterman, Biopolymers 95, 312 (2011).CrossRefGoogle Scholar
  21. 21.
    H. Kirchhoff, Biochim. Biophys. Acta 1837, 495 (2014).CrossRefGoogle Scholar
  22. 22.
    M.B. Forstnerb, C.K. Yee, A.N. Parikh, J.T. Groves, J. Am. Chem. Soc. 128, 15221 (2006).CrossRefGoogle Scholar
  23. 23.
    B.P. Ziemba, J.J. Falke, Chem. Phys. Lipids 172-173, 67 (2013).CrossRefGoogle Scholar
  24. 24.
    L.M. Smith, J.L. Rubenstein, J.W. Parce, H.M. McConnell, Biochemistry 19, 5907 (1980).CrossRefGoogle Scholar
  25. 25.
    S. Ramadurai, A. Holt, V. Krasnikov, G. van den Bogaart, J.A. Killian, B. Poolman, J. Am. Chem. Soc. 131, 12650 (2009).CrossRefGoogle Scholar
  26. 26.
    J. Knol, L. Veenhoff, W.J. Liang, P.J. Henderson, G. Leblanc, B. Poolman, J. Biol. Chem. 271, 15358 (1996).CrossRefGoogle Scholar
  27. 27.
    J.R. Thompson, A.J. Heron, Y. Santoso, M.I. Wallace, Nano Lett. 7, 3875 (2007).CrossRefADSGoogle Scholar
  28. 28.
    E.A. Smith, J.W. Coym, S.M. Cowell, T. Tokimoto, V.J. Hruby, H.I. Yamamura, M.J. Wirth, Langmuir 21, 9644 (2005).CrossRefGoogle Scholar
  29. 29.
    F. Harb, J. Sarkis, N. Ferte, B. Tinland, Eur. Phys. J. E Soft Matter 35, 9795 (2012).CrossRefGoogle Scholar
  30. 30.
    L. Szyk, P. Schwinte, J.C. Voegel, P. Schaaf, B. Tinland, J. Phys. Chem. B 106, 6049 (2002).CrossRefGoogle Scholar
  31. 31.
    J. Davoust, P.F. Devaux, L. Leger, EMBO J. 1, 1233 (1982).Google Scholar
  32. 32.
    A.E. Nkodo, B. Tinland, Electrophoresis 23, 2755 (2002).CrossRefGoogle Scholar
  33. 33.
    C. Scomparin, S. Lecuyer, M. Ferreira, T. Charitat, B. Tinland, Eur. Phys. J. E SM 28, 211 (2009).CrossRefGoogle Scholar
  34. 34.
    F.F. Harb, B. Tinland, Langmuir 29, 5540 (2013).CrossRefGoogle Scholar
  35. 35.
    J. Peters, M.T. Giudici-Orticoni, G. Zaccai, M. Guiral, Eur. Phys. J. E 36, 78 (2013).CrossRefGoogle Scholar
  36. 36.
    P. Bassereau, F. Pincet, Langmuir 13, 7003 (1997).CrossRefGoogle Scholar
  37. 37.
    P. Infossi, E. Lojou, J.P. Chauvin, L. Charles, M. Brugna, M.T. Giudici-Orticoni, Int. J. Hydrog. Energy 35, 10778 (2010).CrossRefGoogle Scholar
  38. 38.
    L. Prunetti, P. Infossi, M. Brugna, C. Ebel, M.T. Giudici-Orticoni, M. Guiral, J. Biol. Chem. 285, 41815 (2010).CrossRefGoogle Scholar
  39. 39.
  40. 40.
    E.S. Wu, K. Jacobson, D. Papahadjopoulos, Biochemistry 16, 3936 (1977).CrossRefGoogle Scholar
  41. 41.
    L.K. Tamm, Biochemistry 27, 1450 (1988).CrossRefGoogle Scholar
  42. 42.
    B.A. Smith, H.M. McConnell, Proc. Natl. Acad. Sci. U.S.A. 75, 2759 (1978).CrossRefADSGoogle Scholar
  43. 43.
    S. Ladha, A.R. Mackie, L.J. Harvey, D.C. Clark, E.J. Lea, M. Brullemans, H. Duclohier, Biophys. J. 71, 1364 (1996).CrossRefADSGoogle Scholar
  44. 44.
    M.R. Alecio, D.E. Golan, W.R. Veatch, R.R. Rando, Proc. Natl. Acad. Sci. U.S.A. 79, 5171 (1982).CrossRefADSGoogle Scholar
  45. 45.
    F. Harb, A. Simon, B. Tinland, Eur. Phys. J. E 36, 140 (2013).CrossRefGoogle Scholar
  46. 46.
    P.E. Milhiet, F. Gubellini, A. Berquand, P. Dosset, J.L. Rigaud, C. Le Grimellec, D. Levy, Biophys. J. 91, 3268 (2006).CrossRefADSGoogle Scholar
  47. 47.
    S.A. Glazier, D.J. Vanderab, A.L. Plant, H. Bayley, G. Valincius, J.J. Kasianowicz, Langmuir 16, 10428 (2000).CrossRefGoogle Scholar
  48. 48.
    L. Bakas, H. Ostolaza, W.L. Vaz, F.M. Goni, Biophys. J. 71, 1869 (1996).CrossRefGoogle Scholar
  49. 49.
    K. Balali-Mood, T.A. Harroun, J.P. Bradshaw, Mol. Membr. Biol. 22, 379 (2005).CrossRefGoogle Scholar
  50. 50.
    A.E. Sowers, C.R. Hackenbrock, Biochim. Biophys. Acta 821, 85 (1985).CrossRefGoogle Scholar
  51. 51.
    M.L. Wagner, L.K. Tamm, Biophys. J. 79, 1400 (2000).CrossRefADSGoogle Scholar
  52. 52.
    M. Merzlyakov, E. Li, K. Hristova, Langmuir 22, 1247 (2006).CrossRefGoogle Scholar
  53. 53.
    G. Hauska, E. Hurt, in Function of Quinones in Energy Conserving Systems, edited by B.L. Trumpower (Academic Press, New York, 1982) pp. 87-110.Google Scholar
  54. 54.
    D. Marchal, W. Boireau, J.M. Laval, J. Moiroux, C. Bourdillon, Biophys. J. 72, 2679 (1997).CrossRefGoogle Scholar
  55. 55.
    L.L. Jahnke, W. Eder, R. Huber, J.M. Hope, K.U. Hinrichs, J.M. Hayes, D.J. Des Marais, S.L. Cady, R.E. Summons, Appl. Environ. Microbiol. 67, 5179 (2001).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Frédéric Harb
    • 1
    • 3
  • Laurence Prunetti
    • 2
  • Marie-Thérèse Giudici-Orticoni
    • 2
  • Marianne Guiral
    • 2
  • Bernard Tinland
    • 3
  1. 1.Department of Biology, Faculty of Sciences - Section IILebanese UniversityBeirutLebanon
  2. 2.CNRS, BIP UMR 7281Aix Marseille UniversitéMarseilleFrance
  3. 3.CINaM-CNRSAix-Marseille Université, UMR7325MarseilleFrance
  4. 4.Department of Microbiology and Cell ScienceUniversity of FloridaGainesvilleUSA

Personalised recommendations