Advertisement

Characterization of intermittency in zooplankton behaviour in turbulence

  • François-Gaël MichalecEmail author
  • François G. Schmitt
  • Sami Souissi
  • Markus Holzner
Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract

We consider Lagrangian velocity differences of zooplankters swimming in still water and in turbulence. Using cumulants, we quantify the intermittency properties of their motion recorded using three-dimensional particle tracking velocimetry. Copepods swimming in still water display an intermittent behaviour characterized by a high probability of small velocity increments, and by stretched exponential tails. Low values arise from their steady cruising behaviour while heavy tails result from frequent relocation jumps. In turbulence, we show that at short time scales, the intermittency signature of active copepods clearly differs from that of the underlying flow, and reflects the frequent relocation jumps displayed by these small animals. Despite these differences, we show that copepods swimming in still and turbulent flow belong to the same intermittency class that can be modelled by a log-stable model with non-analytical cumulant generating function. Intermittency in swimming behaviour and relocation jumps may enable copepods to display oriented, collective motion under strong hydrodynamic conditions and thus, may contribute to the formation of zooplankton patches in energetic environments.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    T. Kiørboe, Oecologia 155, 179 (2008).CrossRefGoogle Scholar
  2. 2.
    S. Kjellerup, T. Kiørboe, Biol. Lett. 8, 438 (2012).CrossRefGoogle Scholar
  3. 3.
    M. Uttieri, A. Nihongi, M.G. Mazzocchi, J.R. Strickler, E. Zambianchi, J. Plankton Res. 29, i17 (2007).CrossRefGoogle Scholar
  4. 4.
    B.J. Gemmell, J. Sheng, E.J. Buskey, Proc. Natl. Acad. Sci. U.S.A. 110, 4661 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    T. Kiørboe, H. Jiang, R.J. Gonçalves, L.T. Nielsen, N. Wadhwa, Proc. Natl. Acad. Sci. U.S.A. 111, 11738 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    F.G. Schmitt, L. Seuront, Physica A 301, 375 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    H. Jiang, T. Kiørboe, J. R. Soc. Interface 8, 1090 (2011).CrossRefGoogle Scholar
  8. 8.
    F.G. Michalec, S. Souissi, M. Holzner, J. R. Soc. Interface 12, 20150158 (2015).CrossRefGoogle Scholar
  9. 9.
    G. Bianco, P. Mariani, A.W. Visser, M.G. Mazzocchi, S. Pigolotti, J. R. Soc. Interface 11, 20140164 (2014).CrossRefGoogle Scholar
  10. 10.
    U. Frisch, Turbulence: The legacy of A. N. Kolmogorov. (Cambridge University Press, Cambridge, UK 1995).Google Scholar
  11. 11.
    F. Anselmet, Y. Gagne, E.J. Hopfinger, R.A. Antonia, J. Fluid Mech 140, 63 (1984).ADSCrossRefGoogle Scholar
  12. 12.
    N. Mordant, P. Metz, O. Michel, J.F. Pinton, Phys. Rev. Lett. 87, 214501 (2001).ADSCrossRefGoogle Scholar
  13. 13.
    H. Xu, M. Bourgoin, N.T. Ouellette, E. Bodenschatz, Phys. Rev. Lett. 96, 024503 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Phys. Rev. E 48, R29 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    Y. Huang, L. Biferale, E. Calzavarini, C. Sun, F. Toschi, Phys. Rev. E 87, 041003(R) (2013).ADSCrossRefGoogle Scholar
  16. 16.
    L. Chevillard, S.G. Roux, E. Lévêque, N. Mordant, J.F. Pinton, A. Arnéodo, Phys. Rev. Lett. 95, 064501 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    F.G. Schmitt, in Nonlinear Science, Complexity edited by A.C.J. Luo, L. Dai, H.R. Hamidzadeh (World Scientific.Google Scholar
  18. 18.
    F.G. Schmitt, Y. Huang, Z. Lu, Y. Liu, N. Fernandez, J. Marine Syst. 77, 473 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    K. Hoyer, M. Holzner, B. Lüthi, M. Guala, A. Liberzon, W. Kinzelbach, Exp. Fluids 39, 923 (2005).CrossRefGoogle Scholar
  20. 20.
    T. Knutsen, W. Melle, L. Calise, J. Plankton Res. 23, 859 (2001).CrossRefGoogle Scholar
  21. 21.
    H. Xu, E. Bodenschatz, Physica D 237, 2095 (2008).ADSCrossRefGoogle Scholar
  22. 22.
    A. Liberzon, B. Lüthi, M. Holzner, S. Ott, J. Berg, J. Mann, Physica D 241, 208 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    H.G. Maas, A. Gruen, D. Papantoniou, Exp. Fluids 15, 133 (1993).CrossRefGoogle Scholar
  24. 24.
    N.A. Malik, T. Dracos, D.A. Papantoniou, Exp. Fluids 15, 279 (1993).Google Scholar
  25. 25.
    J. Willneff, A. Gruen, in Proceedings of the 9th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery. Honolulu, HI, USA.Google Scholar
  26. 26.
    H. Peters, J. Phys. Oceanogr. 33, 1967 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    H.L. Pécseli, J.K. Trulsen, O. Fiksen, Prog. Oceanogr. 85, 171 (2010).ADSCrossRefGoogle Scholar
  28. 28.
    P.K. Yeung, S.B. Pope, B.L. Sawford, J. Turbul. 7, (2006) DOI:10.1080/14685240600868272.
  29. 29.
    L. Biferale, E. Bodenschatz, M. Cencini, A.S. Lanotte, N.T. Ouellette, F. Toschi et al., Phys. Fluids 20, 065103 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    C.W. Gardiner, Handbook of stochastic methods, 3rd edition (Springer, Berlin, 2004).Google Scholar
  31. 31.
    W. Feller, An introduction to probability theory and its applications 3rd edition (John Wiley & Sons, New York, 1971).Google Scholar
  32. 32.
    G. Samorodnitsky, M.S. Taqqu, Stable non-Gaussian random processes (Chapman & Hall/CRC, New York, 1994).Google Scholar
  33. 33.
    D. Schertzer, S. Lovejoy, F.G. Schmitt, Y. Chigirinskaya, D. Marsan, Fractals 05, 427 (1997).MathSciNetCrossRefGoogle Scholar
  34. 34.
    A. La Porta, G.A. Voth, A.M. Crawford, J. Alexander, E. Bodenschatz, Nature 409, 1017 (2001).ADSCrossRefGoogle Scholar
  35. 35.
    D.H. Kelley, N.T. Ouellette, Sci. Rep. 3, 1073 (2013).ADSCrossRefGoogle Scholar
  36. 36.
    T. Kiørboe, A. Andersen, V.J. Langlois, H.H. Jakobsen, J. R. Soc. Interface 7, 1591 (2010).CrossRefGoogle Scholar
  37. 37.
    D. Adhikari, E.K. Longmire, Meas. Sci. Technol. 24, 024011 (2013).ADSCrossRefGoogle Scholar
  38. 38.
    D. Devreker, S. Souissi, J.C. Molinero, D. Beyrend-Dur, F. Gomez, J. Forget-Leray, Estuar Coast Shelf Sci. 89, 245 (2010).ADSCrossRefGoogle Scholar
  39. 39.
    C.A. Morgan, J.R. Cordell, C.A. Simenstad, Marine Biol. 129, 309 (1997).CrossRefGoogle Scholar
  40. 40.
    F.G. Schmitt, D. Devreker, G. Dur, S. Souissi, Ecol. Res. 26, 773 (2011).CrossRefGoogle Scholar
  41. 41.
    W.J. Kimmerer, J.R. Burau, W.A. Bennett, Estuaries 25, 359 (2002).CrossRefGoogle Scholar
  42. 42.
    A. Genin, J.S. Jaffe, R. Reef, C. Richter, P.J.S. Franks, Science 308, 860 (2005).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • François-Gaël Michalec
    • 1
    Email author
  • François G. Schmitt
    • 2
  • Sami Souissi
    • 3
  • Markus Holzner
    • 1
  1. 1.Institute of Environmental EngineeringETH ZurichZurichSwitzerland
  2. 2.UMR 8187, LOG, Laboratoire d’Océanologie et de GéosciencesCNRS, Univ. Lille, Univ. Littoral Cote d’OpaleWimereuxFrance
  3. 3.UMR 8187, LOG, Laboratoire d’Océanologie et de GéosciencesUniv. Lille, CNRS, Univ. Littoral Cote d’OpaleWimereuxFrance

Personalised recommendations