Advertisement

Mesoscopic simulation of single DNA dynamics in rotational flows

  • S. Kumar RanjithEmail author
Regular Article
Part of the following topical collections:
  1. Multi-scale phenomena in complex flows and flowing matter

Abstract

In this numerical study, the transport and dynamics of an isolated DNA in rotational flow generated in a microchannel have been investigated using dissipative particle dynamics. Often, inertial flow through microchannels with a sudden change in surface structure facilitates a re-circulation or vortex region. The conformation and mobility of the bio-polymer under the influence of such rotating fluid inside a square cavity of the microchannel is analyzed. The flexible polymer chain is found to migrate towards the rotating region and follows the vortex streamline. The orientation, size and tumbling period of polymer strands are affected by the strength of the microvortex. At elevated flow rates, the macromolecule prefers to remain inside the vortex and a hydrodynamic trap is formed. Moreover, residence time of the single molecule in the microcavity is significantly influenced by the chain length and flow strength. Further, it has been demonstrated that, such entrapment duration can be strategically altered by modifying the hydrophobicity of the microchannel.

Graphical abstract

Keywords

Topical Issue: Multi-scale phenomena in complex flows and flowing matter 

References

  1. 1.
    G. Whitesides, Nature 442, 368 (2006).CrossRefADSGoogle Scholar
  2. 2.
    W. Lee, Y.G. Kim, B. Chung, U. Demirci, A. Khademhosseini, Adv. Drug Delivery Rev. 62, 449 (2010).CrossRefGoogle Scholar
  3. 3.
    T. Das, S. Chakraborty, Sadhana - Acad. P. Eng. S. 34, 573 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Gulati, V. Rouilly, X. Niu, J. Chappell, R. Kitney, J. Edel, P. Freemont, A. DeMello, J. R. Soc. Interface 6, S493 (2009).CrossRefGoogle Scholar
  5. 5.
    P. Liu, R. Mathies, Trends Biotechnol. 27, 572 (2009).CrossRefGoogle Scholar
  6. 6.
    K. Dorfman, AIChE J. 59, 346 (2013).CrossRefGoogle Scholar
  7. 7.
    D. Mai, C. Brockman, C. Schroeder, Soft Matter 8, 10560 (2012).CrossRefADSGoogle Scholar
  8. 8.
    A.S. Panwar, S. Kumar, J. Chem. Phys. 122, 154902 (2005).CrossRefADSGoogle Scholar
  9. 9.
    N. Hoda, S. Kumar, J. Chem. Phys. 127, 234902 (2007).CrossRefADSGoogle Scholar
  10. 10.
    N. Hoda, S. Kumar, J. Chem. Phys. 128, 164907 (2008).CrossRefADSGoogle Scholar
  11. 11.
    S. Dutta, K.D. Dorfman, S. Kumar, ACS Macro Lett. 4, 271 (2015).CrossRefGoogle Scholar
  12. 12.
    M. Graham, Annu. Rev. Fluid Mech. 43, 273 (2011).CrossRefADSGoogle Scholar
  13. 13.
    E. Shaqfeh, J. Non-Newtonian Fluid Mech. 130, 1 (2005).CrossRefGoogle Scholar
  14. 14.
    T. Perkins, D. Smith, S. Chu, Science 276, 2016 (1997).CrossRefGoogle Scholar
  15. 15.
    C. Schroeder, R. Teixeira, E. Shaqfeh, S. Chu, Macromolecules 38, 1967 (2005).CrossRefADSGoogle Scholar
  16. 16.
    R. Jendrejack, E. Dimalanta, D. Schwartz, M. Graham, J. De Pablo, Phys. Rev. Lett. 91, 038102 (2003).CrossRefADSGoogle Scholar
  17. 17.
    R. Jendrejack, D. Schwartz, J. De Pablo, M. Graham, J. Chem. Phys. 120, 2513 (2004).CrossRefADSGoogle Scholar
  18. 18.
    N. Watari, M. Makino, N. Kikuchi, R. Larson, M. Doi, J. Chem. Phys. 126, 094902 (2007).CrossRefADSGoogle Scholar
  19. 19.
    J. Han, S.W. Turner, H.G. Craighead, Phys. Rev. Lett. 83, 1688 (1999) DOI:10.1103/PhysRevLett.83.1688.CrossRefADSGoogle Scholar
  20. 20.
    M. Streek, F. Schmid, T.T. Duong, A. Ros, J. Biotech. 112, 79 (2004).CrossRefGoogle Scholar
  21. 21.
    A.S. Panwar, S. Kumar, Macromolecules 39, 1279 (2006).CrossRefADSGoogle Scholar
  22. 22.
    E. Moeendarbary, T. Ng, H. Pan, K. Lam, Microfluid. Nanofluid. 8, 243 (2010).CrossRefGoogle Scholar
  23. 23.
    H. Pan, T. Ng, H. Li, E. Moeendarbary, Sensor. Actuat. A-Phys. 157, 328 (2010).CrossRefGoogle Scholar
  24. 24.
    G.N. Fayad, N.G. Hadjiconstantinou, Microfluid. Nanofluid. 8, 521 (2010).CrossRefGoogle Scholar
  25. 25.
    Y.M. Lee, Y.L. Joo, J. Chem. Phys. 127, 124902 (2007).CrossRefADSGoogle Scholar
  26. 26.
    J. Del Bonis-O’Donnell, W. Reisner, D. Stein, New J. Phys. 11, 075032 (2009).CrossRefGoogle Scholar
  27. 27.
    M.B. Mikkelsen, W. Reisner, H. Flyvbjerg, A. Kristensen, Nano Lett. 11, 1598 (2011).CrossRefADSGoogle Scholar
  28. 28.
    S.T. Ollila, C. Denniston, M. Karttunen, T. Ala-Nissila, Phys. Rev. Lett. 112, 118301 (2014).CrossRefADSGoogle Scholar
  29. 29.
    Y. Zhang, J.J. de Pablo, M.D. Graham, J. Chem. Phys. 136, 014901 (2012).CrossRefADSGoogle Scholar
  30. 30.
    Z.T.F. Yu, Y.K. Lee, M. Wong, Y. Zohar, J. Microelectromech. S. 14, 1386 (2005).CrossRefGoogle Scholar
  31. 31.
    A.S. Panwar, S. Kumar, J. Chem. Phys. 118, 925 (2003).CrossRefADSGoogle Scholar
  32. 32.
    C.M. Lin, Y.S. Lai, H.P. Liu, C.Y. Chen, A.M. Wo, Anal. Chem. 80, 8937 (2008).CrossRefGoogle Scholar
  33. 33.
    D.T. Chiu, Anal. Bioanal. Chem. 387, 17 (2007).CrossRefGoogle Scholar
  34. 34.
    J.S. Lee, E. Shaqfeh, S.J. Muller, Phys. Rev. E. 75, 040802(R) (2007).CrossRefADSGoogle Scholar
  35. 35.
    S. Granick, Y. Zhu, H. Lee, Nat. Mater. 2, 221 (2003).CrossRefADSGoogle Scholar
  36. 36.
    E. Lauga, M.P. Brenner, H.A. Stone, Handbook of Experimental Fluid Dynamics (Springer, New York, 2007) pp. 1219--1240.Google Scholar
  37. 37.
    D. Dilip, N.K. Jha, R.N. Govardhan, M. Bobji, Colloids Surf. A 459, 217 (2014).CrossRefGoogle Scholar
  38. 38.
    J. Rothstein, Ann. Rev. Fluid Mech. 42, 89 (2010).CrossRefADSGoogle Scholar
  39. 39.
    S. Chakraborty, K.D. Anand, Phys. Fluids 20, 043602 (2008).CrossRefADSGoogle Scholar
  40. 40.
    S.K. Ranjith, B.S.V. Patnaik, S. Vedantam, Soft Matter 10, 4184 (2014).CrossRefADSGoogle Scholar
  41. 41.
    G. Slater, C. Holm, M. Chubynsky, H. de Haan, A. Dub, K. Grass, O. Hickey, C. Kingsburry, D. Sean, T. Shendruk, L. Zhan, Electrophoresis 30, 792 (2009).CrossRefGoogle Scholar
  42. 42.
    P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992).CrossRefADSGoogle Scholar
  43. 43.
    R. Groot, P. Warren, J. Chem. Phys. 107, 4423 (1997).CrossRefADSGoogle Scholar
  44. 44.
    K. Ayappa, A. Malani, P. Kalyan, F. Thakkar, J. Indian I. Sci. 87, 35 (2007).MathSciNetzbMATHGoogle Scholar
  45. 45.
    E. Moeendarbary, T. Ng, M. Zangeneh, Int. J. App. Mech. 2, 161 (2010).CrossRefGoogle Scholar
  46. 46.
    W. Pan, B. Caswell, G.E. Karniadakis, Langmuir 26, 133 (2010).CrossRefGoogle Scholar
  47. 47.
    X. Fan, N. Phan-Thien, S. Chen, X. Wu, T. Ng, Phys. Fluids 18, 063102 (2006).CrossRefADSGoogle Scholar
  48. 48.
    K. Yan, Y.Z. Chen, J. Han, G.R. Liu, J.S. Wang, N. Hadjiconstantinou, Microfluid. Nanofluid. 12, 157 (2012).CrossRefGoogle Scholar
  49. 49.
    S. Danioko, M. Laradji, Phys. A 391, 3379 (2012).CrossRefGoogle Scholar
  50. 50.
    K.R. Prathyusha, A.P. Deshpande, M. Laradji, P.B. Sunil Kumar, Soft Matter 9, 9983 (2013).CrossRefADSGoogle Scholar
  51. 51.
    D. Quinn, I. Pivkin, S. Wong, K.H. Chiam, M. Dao, G. Karniadakis, S. Suresh, Ann. Biomed. Eng. 39, 1041 (2011).CrossRefGoogle Scholar
  52. 52.
    W. Pan, I.V. Pivkin, G.E. Karniadakis, Europhys. Lett. 84, 10012 (2008).MathSciNetCrossRefADSGoogle Scholar
  53. 53.
    S.K. Ranjith, B.S.V. Patnaik, S. Vedantam, J. Comput. Phys. 232, 174 (2013).MathSciNetCrossRefADSGoogle Scholar
  54. 54.
    S.K. Ranjith, B.S.V. Patnaik, S. Vedantam, Phys. Rev. E 87, 033303 (2013).CrossRefADSGoogle Scholar
  55. 55.
    S.K. Ranjith, S. Vedantam, B.S.V. Patnaik, Microfluid. Nanofluid. pp. DOI:10.1007/s10 404--015--1580--6 (2015).
  56. 56.
    V. Symeonidis, G. Karniadakis, B. Caswell, Phy. Rev. Lett. 95, 076001 (2005).CrossRefADSGoogle Scholar
  57. 57.
    A. Kumar, Y. Asako, E. Abu-Nada, M. Krafczyk, M. Faghri, Microfluid. Nanofluid. 7, 467 (2009).CrossRefGoogle Scholar
  58. 58.
    X. Fan, N. Phan-Thien, N.T. Yong, X. Wu, D. Xu, Phys. Fluids 15, 11 (2003).CrossRefADSGoogle Scholar
  59. 59.
    C.L.M.H. Navier, Mem. Acad. R. Sci. Inst. France 6, 389 (1823).Google Scholar
  60. 60.
    T. Perkins, S. Quake, D. Smith, S. Chu, Science 264, 822 (1994).CrossRefADSGoogle Scholar
  61. 61.
    J. Marko, E. Siggia, Macromolecules 28, 8759 (1995).CrossRefADSGoogle Scholar
  62. 62.
    V. Symeonidis, G. Karniadakis, B. Caswell, J. Chem. Phys. 125, 184902 (2006).CrossRefADSGoogle Scholar
  63. 63.
    P. Doyle, B. Ladoux, J.L. Viovy, Phys. Rev. Lett. 84, 4769 (2000).CrossRefADSGoogle Scholar
  64. 64.
    C.H. Choi, C.J. Kim, Phys. Rev. Lett. 96, 066001 (2006).CrossRefADSGoogle Scholar
  65. 65.
    U. Ghia, K. Ghia, C. Shin, J. Comput. Phys. 48, 387 (1982) DOI: 10.1016/0021-9991(82)90058-4.CrossRefADSzbMATHGoogle Scholar
  66. 66.
    A. Stroock, S. Dertinger, A. Ajdari, I. Mezi, H. Stone, G. Whitesides, Science 295, 647 (2002).CrossRefADSGoogle Scholar
  67. 67.
    C.M. Schroeder, R.E. Teixeira, E.S. Shaqfeh, S. Chu et al., Phys. Rev. Lett. 95, 018301 (2005).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Micro/nanofluidics Research Laboratory, Department of Mechanical EngineeringCollege of Engineering Trivandrum, Govermnet of KeralaThiruvananthapuramIndia

Personalised recommendations