Fredericks transitions in biaxial nematics

  • V. N. Blinov
  • V. L. Golo
  • E. I. Kats
Regular Article


Much of our understanding (and applications) of biaxial nematic liquid crystals requires the study of the textural transformations in external electric or magnetic fields. To that end, one should employ theoretical approaches which could have bearing on the minimization problem of the multi-parametric free energy. The immediate shortcoming of the direct free-energy minimization (widely used for uniaxial nematics) is the need to resolve several non-linear constraints. To overcome this difficulty, in what follows we shall use the “angular velocity”, which describes space rotations of the order parameter, and is in fact a vector internal curvature of the texture. This method provides a means to resolve the constraints imposed on the order parameter. Thus, we have obtained the set of equations to find all possible one-dimensional textures of biaxial nematics in the external field. To illustrate our method, we calculate the critical fields corresponding to some basic configurations for textural transitions in the biaxial nematics. We feel that this result could be useful to determine the intrinsic degree of biaxiality for liquid crystalline materials.

Graphical abstract


Soft Matter: Liquid crystals 


  1. 1.
    V. Borshch, S.V. Shiyanovskii, B.-X. Li, O.D. Lavrentovich, Phys. Rev. E 90, 062504 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    L.J. Yu, A. Saupe, Phys. Rev. Lett. 45, 1000 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    S. Chandrasekhar, B.K. Sadashiva, B.R. Ratnaand, V.N. Raja, J. Phys. 30, L49 (1988).Google Scholar
  4. 4.
    K. Praefcke, B. Kohne, D. Singer, D. Demus, G. Pelzland, S. Diele, Liq. Cryst. 7, 589 (1990).CrossRefGoogle Scholar
  5. 5.
    S. Chandrasekhar, B.R. Ratna, B.K. Sadashivaand, V.N. Raja, Mol. Cryst. Liq. Cryst. 165, 123 (1988).Google Scholar
  6. 6.
    F. Hessel, H. Finkelmann, Polym. Bull. 15, 349 (1986).CrossRefGoogle Scholar
  7. 7.
    M.J. Freiser, Phys. Rev. Lett. 24, 1041 (1970).ADSCrossRefGoogle Scholar
  8. 8.
    A.H. Windle, C. Viney, R. Golombok, A.M. Donald, G.R. Mitchell, Faraday Disc. Chem. Soc. 79, 55 (1985).CrossRefGoogle Scholar
  9. 9.
    S. Chandrasekhar, V.N. Rajaand, B.K. Sadashiva, Mol. Cryst. Liquid Cryst. Lett. 7, 65 (1990).Google Scholar
  10. 10.
    R. Stannarius, J. Appl. Phys. 104, 036104 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    K.V. Le, M. Mathews, M. Chambers, J. Harden, Q. Li, H. Takezoe, A. Jakli, Phys. Rev. E 79, 030701(R) (2009).CrossRefGoogle Scholar
  12. 12.
    N. Vaupotic, J. Szydlowska, M. Salamonszyk, A. Kovarova, J. Svoboda, M. Osipov, D. Pociecha, E. Gorecka, Phys. Rev. E 80, 030701(R) (2009).ADSCrossRefGoogle Scholar
  13. 13.
    B. Senyuk, H. Wonderly, M. Mathews, Q. Li, S.V. Shiyanovskii, O.D. Lavrentovich, Phys. Rev. E 82, 041711 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    B. Senyuk, Y.-K. Kim, L. Tortora, S.-T. Shin, S.V. Shiyanovskii, O.D. Lavrentovich, Mol. Cryst. Liq. Cryst. 540, 20 (2011).CrossRefGoogle Scholar
  15. 15.
    T. Ostapenko, C. Zhang, S.N. Sprunt, A. Jakli, J.T. Gleeson, Phys. Rev. E. 84, 021705 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    C. Zhang, S. Chakraborty, T. Ostapenko, S. Sprunt, A. Jakli, J.T. Gleeson, Phys. Rev. E 86, 0290704(R) (2012).ADSGoogle Scholar
  17. 17.
    Y.-K. Kim, M. Majumdar, B.I. Senyuk, L. Tortora, J. Seltmann, M. Lehmann, A. Jakli, J.T. Gleeson, O.D. Lavrentovich, S. Sprunt, Soft Matter 8, 8880 (2012).ADSCrossRefGoogle Scholar
  18. 18.
    A. Jakli, Liq. Cryst. Rev. 1, 65 (2013).CrossRefGoogle Scholar
  19. 19.
    V. Frederiks, V. Zolina, Trans. Faraday Soc. 29, 919 (1933).CrossRefGoogle Scholar
  20. 20.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Claredon Press, Oxford, 1993).Google Scholar
  21. 21.
    H. Brand, H. Pleiner, Phys. Rev. A 24, 2777 (1981).ADSCrossRefGoogle Scholar
  22. 22.
    V.L. Golo, M.I. Monastyrskii, Lett. Math. Phys. 2, 373 (1978).MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    V.L. Golo, E.I. Kats, A.A. Sevenyuk, D.O. Sinitsyn, Phys. Rev. E 88, 042504-7 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    G.R. Luchurst, T.J. Sluckin (Editors), Biaxial Nematic Liquid Crystals: Theory, Simulation and Experiment (Wiley, London, UK, 2015).Google Scholar
  25. 25.
    O. Mescheriakova, S. Chadov, A.K. Nayak, U.K. Robler, arxiv: 1404.4581v2 (2014).Google Scholar
  26. 26.
    A.R.D. Close, C. Tronci, arxiv: 1503.03024v1 (2015).Google Scholar
  27. 27.
    M.I. Monastyrskii, P.V. Sasorov, JETP 102, 149 (2006).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Kharkevich Institute for Information Transmission ProblemsRASMoscowRussia
  2. 2.Department of Mechanics and MathematicsLomonosov Moscow State UniversityMoscowRussia
  3. 3.Landau Institute for Theoretical PhysicsRASMoscow regionRussia
  4. 4.Moscow Institute of Physics and TechnologyMoscow regionRussia

Personalised recommendations