Advertisement

Vibration-induced compaction of granular suspensions

  • S. Kiesgen de Richter
  • C. Hanotin
  • P. Marchal
  • S. Leclerc
  • F. Demeurie
  • N. Louvet
Regular Article

Abstract

We investigate the compaction dynamics of vibrated granular suspensions using both digital imaging technique and MRI measurements. Starting from initialy loose packings, our experimental data suggest the existence of two stages in the compaction dynamics: a fast stage at short times where a rising compaction front propagates through the granular suspension and a slow stage at large times where the packing compacts slowly and homogeneously. The compaction dynamics in each stage can be well fitted to usual stretched exponential laws with stretching exponents equal to 2 and 0.45, respectively. The transition time between these two stages, τ c , depends on the fluid viscosity, vibration intensity and grain diameter. We show that τ c −1 and the velocity of the front decrease roughly linearly with the lubrication Peclet number, Pe lub related to the competition between the lubrication stress induced by vibrations and the granular pressure.

Graphical abstract

Keywords

Flowing Matter: Granular Matter 

References

  1. 1.
    J. Knight, C. Fandrich, C.N. Lau, H. Jaeger, S. Nagel, Phys. Rev. E 51, 3957 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    P. Richard, M. Nicodemi, R. Delannay, P. Ribire, D. Bideau, Nat. Mater. 4, 121 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    G. Lumay, N. Vandewalle, Phys. Rev. Lett. 95, 028002 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    G. Lumay, N. Vandewalle, Phys. Rev. E 74, 021301 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Dijksman, M. van Hecke, EPL 88, 44001 (2009).ADSCrossRefMATHGoogle Scholar
  6. 6.
    N. Mueggenburg, Phys. Rev. E 85, 041305 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    S. Zivkovic et al., Eur. Phys. J. B 86, 461 (2013).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    M. Nicolas, P. Duru, O. Pouliquen, Eur. Phys. J. E 3, 309 (2000).CrossRefGoogle Scholar
  9. 9.
    O. Pouliquen, M. Belzons, M. Nicolas, Phys. Rev. Lett. 91, 014301 (2001).ADSCrossRefGoogle Scholar
  10. 10.
    C. Lesaffre, V. Mineau, D. Picart, H. Van damme, C. R. Acad. Sci. Paris 1, 647 (2000).Google Scholar
  11. 11.
    E. Fukushima, A.D. Rosato, M. Kos, Rev. Sci. Instrum. 68, 4217 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    M.D. Mantle, A. Sederman, L.F. Gladden, J.M. Huntley, T.W. Martin, R.D. Wildman, M.D. Shattuckc, Powder Technol. 179, 164 (2008).CrossRefGoogle Scholar
  13. 13.
    K. Sakaie et al., EPL 84, 38001 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    P. Marchal, L. Choplin, N. Sminari, J. Rheol. 1, 1 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    C. Hanotin, S.K. de Richter, P. Marchal, L.J. Michot, C. Baravian, Phys. Rev. Lett. 108, 198301 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    N. Vandewalle, G. Lumay, F. Ludewig, J.E. Fiscina, Phys. Rev. E 85, 031309 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    P. Philippe, D. Bideau, Europhys. Lett. 60, 5 (2002).CrossRefGoogle Scholar
  18. 18.
    A. Kabla, G. Debrgas, Phys. Rev. Lett. 92, 35501 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    M. Spiegelman, J. Fluid. Mech. 247, 17 (1993).MathSciNetADSCrossRefMATHGoogle Scholar
  20. 20.
    M. Spiegelman, J. Fluid. Mech. 247, 39 (1993).MathSciNetADSCrossRefGoogle Scholar
  21. 21.
    V. Barcilon, F.M. Richter, J. Fluid. Mech. 164, 429 (1986).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    R. Snieder, A. Van. den. Beukel, Granular Matter 6, 1 (2004).CrossRefMATHGoogle Scholar
  23. 23.
    M. Ouriemi, P. Aussillous, E. Guazzelli, J. Fluid. Mech. 636, 295 (2009).MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    F. Ludewig, S. Dorbolo, T. Gilet, N. Vandewalle, EPL 84, 44001 (2008).ADSCrossRefGoogle Scholar
  25. 25.
    J.E. Fiscina, G. Lumay, F. Ludewig, N. Vandewalle, Phys. Rev. Lett. 105, 048001 (2010).ADSCrossRefGoogle Scholar
  26. 26.
    P. Marchal, C. Hanotin, L.J Michot, S. Kiesgen de Richter, Phys. Rev. E 88, 012207 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    E. Caglioti, A. Coniglio, H.J. Herrmann, V. Loreto, M. Nicodemia, Physica A 265, 311 (1999).ADSCrossRefGoogle Scholar
  28. 28.
    T. Boutreux, P.G. de Gennes, Physica A 244, 59 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    P. Richard et al., Phys. Rev. E 68, 020301 (2003).ADSCrossRefGoogle Scholar
  30. 30.
    S.F. Edwards, R.B.S. Oakeshott, Physica A 157, 1080 (1989).MathSciNetADSCrossRefMATHGoogle Scholar
  31. 31.
    T. Aste, T.D. Matteo, Phys. Rev. E 77, 021309 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    P.G de Gennes, J. Colloid Interface Sci. 226, 1 (2000).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. Kiesgen de Richter
    • 1
  • C. Hanotin
    • 1
  • P. Marchal
    • 2
  • S. Leclerc
    • 1
  • F. Demeurie
    • 1
  • N. Louvet
    • 1
  1. 1.Laboratoire d’Energétique et de Mécanique Théorique et Appliquée (LEMTA)Université de Lorraine-CNRS, UMR 7563Vandoeuvre-lès-NancyFrance
  2. 2.Laboratoire Réaction et Génie des procédé (LRGP)Université de Lorraine-CNRS, UMR 7274NancyFrance

Personalised recommendations