A single charge in the actin binding domain of fascin can independently tune the linear and non-linear response of an actin bundle network

  • M. Maier
  • K. W. Müller
  • C. Heussinger
  • S. Köhler
  • W. A. Wall
  • A. R. Bausch
  • O. LielegEmail author
Open Access
Regular Article


Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.

Graphical abstract


Soft Matter: Polymers and Polyelectrolytes 

Supplementary material

10189_2015_136_MOESM1_ESM.pdf (1 mb)
Supplementary material, approximately 228 KB.


  1. 1.
    A.J. Ridley, Cell 145, 1012 (2011).CrossRefGoogle Scholar
  2. 2.
    D.A. Head, A.J. Levine, F.C. MacKintosh, Phys. Rev. E 68, 061907 (2003).CrossRefADSGoogle Scholar
  3. 3.
    K.E. Kasza, A.C. Rowat, J.Y. Liu, T.E. Angelini, C.P. Brangwynne et al., Curr. Opin. Cell Biol. 19, 101 (2007).CrossRefGoogle Scholar
  4. 4.
    K.E. Kasza, G.H. Koenderink, Y.C. Lin, C.P. Broedersz, W. Messner et al., Phys. Rev. E 79, 041928 (2009).CrossRefADSGoogle Scholar
  5. 5.
    O. Lieleg, M.M.A.E. Claessens, A.R. Bausch, Soft Matter 6, 218 (2010).CrossRefADSGoogle Scholar
  6. 6.
    J.M. Tse, G. Cheng, J.A. Tyrrell, S.A. Wilcox-Adelman, Y. Boucher et al., Proc. Natl. Acad. Sci. U.S.A. 109, 911 (2012).CrossRefADSGoogle Scholar
  7. 7.
    J. Faix, K. Rottner, Curr. Opin. Cell Biol. 18, 18 (2006).CrossRefGoogle Scholar
  8. 8.
    P.K. Mattila, P. Lappalainen, Nat. Rev. Mol. Cell Biology 9, 446 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Claessens, M. Bathe, E. Frey, A.R. Bausch, Nat. Mater. 5, 748 (2006).CrossRefADSGoogle Scholar
  10. 10.
    M. Claessens, C. Semmrich, L. Ramos, A.R. Bausch, Proc. Natl. Acad. Sci. U.S.A. 105, 8819 (2008).CrossRefADSGoogle Scholar
  11. 11.
    Y.S. Aratyn, T.E. Schaus, E.W. Taylor, G.G. Borisy, Mol. Biol. Cell 18, 3928 (2007).CrossRefGoogle Scholar
  12. 12.
    N. Kureishy, V. Sapountzi, S. Prag, N. Anilkumar, J.C. Adams, BioEssays 24, 350 (2002).CrossRefGoogle Scholar
  13. 13.
    D. Vignjevic, M. Schoumacher, N. Gavert, K.P. Janssen, G. Jih et al., Cancer Res. 67, 6844 (2007).CrossRefGoogle Scholar
  14. 14.
    A. Li, J.C. Dawson, M. Forero-Vargas, H.J. Spence, X.Z. Yu et al., Curr. Biol. 20, 339 (2010).CrossRefGoogle Scholar
  15. 15.
    A.U. Jawhari, A. Buda, M. Jenkins, K. Shehzad, C. Sarraf et al., Am. J. Pathol. 162, 69 (2003).CrossRefGoogle Scholar
  16. 16.
    J. Zanet, A. Jayo, S. Plaza, T. Millard, M. Parsons et al., J. Cell Biol. 197, 477 (2012).CrossRefGoogle Scholar
  17. 17.
    S. Ono, Y. Yamakita, S. Yamashiro, P.T. Matsudaira, J.R. Gnarra et al., J. Biol. Chem. 272, 2527 (1997).CrossRefGoogle Scholar
  18. 18.
    D. Vignjevic, S. Kojima, T. Svitkina, G.G. Borisy, J. Cell Biol. 174, 863 (2006).CrossRefGoogle Scholar
  19. 19.
    S. Jansen, A. Collins, C.S. Yang, G. Rebowski, T. Svitkina et al., J. Biol. Chem. 286, 30087 (2011).CrossRefGoogle Scholar
  20. 20.
    S.Y. Yang, F.K. Huang, J.Y. Huang, S. Chen, J. Jakoncic et al., J. Biol. Chem. 288, 274 (2013).CrossRefGoogle Scholar
  21. 21.
    J.A. Spudich, S. Watt, J. Biol. Chem. 246, 4866 (1971).Google Scholar
  22. 22.
    D. Vignjevic, D. Yarar, M.D. Welch, J. Peloquin, T. Svitkina et al., J. Cell Biol. 160, 951 (2003).CrossRefGoogle Scholar
  23. 23.
    C. Semmrich, R.J. Larsen, A.R. Bausch, Soft Matter 4, 1675 (2008).CrossRefADSGoogle Scholar
  24. 24.
    C.J. Cyron, W.A. Wall, Int. J. Num. Meth. Engin. 90, 955 (2012).zbMATHMathSciNetGoogle Scholar
  25. 25.
    C.J. Cyron, K.W. Müller, A.R. Bausch, W.A. Wall, J. Comput. Phys. 244, 236 (2013).CrossRefADSMathSciNetGoogle Scholar
  26. 26.
    C.J. Cyron, K.W. Müller, K.M. Schmoller, A.R. Bausch, W.A. Wall et al., EPL 102, 38003 (2013).CrossRefADSGoogle Scholar
  27. 27.
    K.W. Muller, R.F. Bruinsma, O. Lieleg, A.R. Bausch, W.A. Wall et al., Phys. Rev. Lett. 112, 238102 (2014).CrossRefADSGoogle Scholar
  28. 28.
    C.J. Cyron, W.A. Wall, Phys. Rev. E 80, 066704 (2009).CrossRefADSGoogle Scholar
  29. 29.
    C.J. Cyron, W.A. Wall, Phys. Rev. E 82, 066705 (2010).CrossRefADSGoogle Scholar
  30. 30.
    G.I. Bell, Science 200, 618 (1978).CrossRefADSGoogle Scholar
  31. 31.
    O. Lieleg, M. Claessens, C. Heussinger, E. Frey, A.R. Bausch, Phys. Rev. Lett. 99, 088102 (2007).CrossRefADSGoogle Scholar
  32. 32.
    O. Lieleg, A.R. Bausch, Phys. Rev. Lett. 99, 158105 (2007).CrossRefADSGoogle Scholar
  33. 33.
    R. Tharmann, M. Claessens, A.R. Bausch, Phys. Rev. Lett. 98, 088103 (2007).CrossRefADSGoogle Scholar
  34. 34.
    O. Lieleg, K.M. Schmoller, M.M.A.E. Claessens, A.R. Bausch, Biophys. J. 96, 4725 (2009).CrossRefADSGoogle Scholar
  35. 35.
    C. Heussinger, M. Bathe, E. Frey, Phys. Rev. Lett. 99, 048101 (2007).CrossRefADSGoogle Scholar
  36. 36.
    L. Wolff, K. Kroy, Phys. Rev. E 86, 040901 (2012).CrossRefADSGoogle Scholar
  37. 37.
    L. Wolff, P. Fernandez, K. Kroy, Plos One 7, e40063 (2012).CrossRefADSGoogle Scholar
  38. 38.
    C. Heussinger, New J. Phys. 14, 095029 (2012).CrossRefADSGoogle Scholar
  39. 39.
    C. Heussinger, E. Frey, Phys. Rev. Lett. 97, 105501 (2006).CrossRefADSGoogle Scholar
  40. 40.
    S.M. Ward, A. Weins, M.R. Pollak, D.A. Weitz, Biophys. J. 95, 4915 (2008).CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Maier
    • 1
  • K. W. Müller
    • 2
  • C. Heussinger
    • 3
  • S. Köhler
    • 4
  • W. A. Wall
    • 2
  • A. R. Bausch
    • 1
  • O. Lieleg
    • 5
    Email author
  1. 1.Lehrstuhl für Zellbiophysik E27, Physik-DepartmentTechnische Universität MünchenGarchingGermany
  2. 2.Institute for Computational Mechanics, Department of Mechanical EngineeringTechnische Universität MünchenGarchingGermany
  3. 3.Institute for Theoretical PhysicsUniversität GöttingenGöttingenGermany
  4. 4.Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyUSA
  5. 5.Institute of Medical Engineering IMETUM and Department of Mechanical EngineeringTechnische Universität MünchenGarchingGermany

Personalised recommendations