Advertisement

Numerical investigation of thermo-magneto-solutal flow of ferrocolloid through ordered and disordered permeable membranes

  • Dmitry ZablotskyEmail author
  • Elmars Blums
Regular Article
  • 111 Downloads
Part of the following topical collections:
  1. Thermal non-equilibrium phenomena in multi-component fluids

Abstract

We explore the mechanism of ferroparticle transfer in porous structures in the conditions of simultaneous action of the thermal gradient and the magnetic field. We show that when a ferrocolloid saturated porous matrix is placed in a homogeneous magnetic field the grains of the porous frame notably distort the uniformity of the internal field by creating sharp gradients in the vicinity of the interface. On the other hand, the application of the temperature gradient creates an imbalance of the ferroparticle concentration in the bulk of the porous structure due to colloidal thermophoresis. The combination of the imbalance of concentration of the magnetic nanoparticles and the internal gradients of the magnetic field creates a magnetic force and convective flow of solution through the porous structure. We report the results of the pore-scale numerical simulations of the ferrocolloid thermo-magneto-solutal flow in geometrically simple ordered and disordered permeable structures and membranes with different porosity.

Graphical abstract

Keywords

Topical Issue: Thermal non-equilibrium phenomena in multi-component fluids 

References

  1. 1.
    E. Blums, A. Mezulis, G. Kronkalns, J. Magn. & Magn. Mater. 169, 220 (1997).CrossRefADSGoogle Scholar
  2. 2.
    J. Lenglet, A. Bourdon, J. Bacri, G. Demouchy, Phys. Rev. E 65, 031408 (2002).CrossRefADSGoogle Scholar
  3. 3.
    S. Alves, G. Demouchy, A. Bee, D. Talbot, A. Bourdon, A.M.F. Neto, Philos. Mag. 83, 2059 (2003).CrossRefADSGoogle Scholar
  4. 4.
    G. Meriguet, G. Demouchy, E. Dubois, R. Perzynski, A. Bourdon, J. Non-Equilib. Thermodyn. 32, 271 (2007).CrossRefADSzbMATHGoogle Scholar
  5. 5.
    R. Rosensweig, Ferrohydrodynamics (Dover Publications, 2014).Google Scholar
  6. 6.
    E. Blums, J. Magn. & Magn. Mater. 149, 111 (1995).CrossRefADSGoogle Scholar
  7. 7.
    E. Blums, Magnetohydrodynamics 39, 369 (2003).ADSGoogle Scholar
  8. 8.
    M. Maiorov, A. Tsebers, Magnetohydrodynamics 19, 376 (1983).zbMATHGoogle Scholar
  9. 9.
    A. Cebers, M. Igonin, Magnetohydrodynamics 38, 265 (2002).ADSGoogle Scholar
  10. 10.
    M. Igonin, Magnetohydrodynamics 40, 53 (2004).ADSGoogle Scholar
  11. 11.
    A. Mezulis, E. Blums, Magnetohydrodynamics 40, 337 (2004).ADSGoogle Scholar
  12. 12.
    E. Blums, J. Magn. & Magn. Mater. 289, 246 (2005).CrossRefADSGoogle Scholar
  13. 13.
    D. Zablotsky, E. Blums, Phys. Rev. E 84, 026319 (2011).CrossRefADSGoogle Scholar
  14. 14.
    D. Zablotsky, E. Blums, Phys. Rev. E 84, 066305 (2011).CrossRefADSGoogle Scholar
  15. 15.
    D. Zablotsky, A. Mezulis, E. Blums, C.R. Méc. 341, 449 (2013).CrossRefADSGoogle Scholar
  16. 16.
    T. Volker, S. Odenbach, Phys. Fluids 15, 2198 (2003).CrossRefADSGoogle Scholar
  17. 17.
    E. Blums, G. Kronkalns, A. Mezulis, V. Sints, J. Magn. & Magn. Mater. 323, 1334 (2011).CrossRefADSGoogle Scholar
  18. 18.
    E. Blums, A. Mezulis, G. Kronkalns, V. Sints, Magnetohydrodynamics 48, 451 (2012).Google Scholar
  19. 19.
    E. Blums, V. Sints, G. Kronkalns, A. Mezulis, C.R. Méc. 341, 348 (2013).CrossRefADSGoogle Scholar
  20. 20.
    E. Blums, V. Sints, A. Mezulis, G. Kronkalns, Magnetohydrodynamics 49, 360 (2013).Google Scholar
  21. 21.
    H. Davarzani, M. Marcoux, M. Quintard, Int. J. Heat Mass Transfer 53, 1514 (2010).CrossRefzbMATHGoogle Scholar
  22. 22.
    E. Blums, A. Cebers, M. Maiorov, Magnetic fluids (Walter de Gryuter & Co, 1997).Google Scholar
  23. 23.
    D. Griffiths, Introduction to Electrodynamics, 3rd edition (Prentice Hall, 2007).Google Scholar
  24. 24.
    E. Blum, Magnetohydrodynamics 15, 23 (1979).Google Scholar
  25. 25.
    V. Naletova, A. Kvitantsev, J. Magn. & Magn. Mater. 289, 250 (2005).CrossRefADSGoogle Scholar
  26. 26.
    M. Quintard, S. Whitaker, Chem. Engin. Sci. 48, 2537 (1993).CrossRefGoogle Scholar
  27. 27.
    S. Whitaker, Transport Porous Media 1, 3 (1986).CrossRefGoogle Scholar
  28. 28.
    P. Carman, Trans. Inst. Chem. Engin. 15, 150 (1937).Google Scholar
  29. 29.
    B. Gebart, J. Composite Mater. 26, 1100 (1992).CrossRefADSGoogle Scholar
  30. 30.
    M. Quintard, S. Whitaker, Adv. Water Res. 17, 221 (1994).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institute of PhysicsLatvian UniversitySalaspils-1Latvia

Personalised recommendations