The nematode C. elegans as a complex viscoelastic fluid

  • Matilda Backholm
  • William S. Ryu
  • Kari Dalnoki-Veress
Regular Article


The viscoelastic material properties of the model organism C. elegans were probed with a micropipette deflection technique and modelled with the standard linear solid model. Dynamic relaxation measurements were performed on the millimetric nematode to investigate its viscous characteristics in detail. We show that the internal properties of C. elegans can not be fully described by a simple Newtonian fluid. Instead, a power-law fluid model was implemented and shown to be in excellent agreement with experimental results. The nematode exhibits shear thinning properties and its complex fluid characteristics were quantified. The bending-rate dependence of the internal damping coefficient of C. elegans could affect its gait modulation in different external environments.

Graphical abstract


Living systems: Biological Matter 


  1. 1.
    B. Wood, The Nematode Caenorhabditis Elegans (Cold Spring Harbor Laboratory Press, New York, 1988).Google Scholar
  2. 2.
    S. Park, H. Hwang, S.W. Nam, F. Martinez, R.H. Austin, W.S. Ryu, PLoS One 3, e2550 (2008).CrossRefADSGoogle Scholar
  3. 3.
    C. Fang-Yen, M. Wyart, J. Xie, R. Kawai, T. Kodger, S. Chen, Q. Wen, A.D.T. Samuel, Proc. Natl. Acad. Sci. U.S.A. 107, 20323 (2010).CrossRefADSGoogle Scholar
  4. 4.
    J. Sznitman, X. Shen, R. Sznitman, P.E. Arratia, Phys. Fluids 22, 121901 (2010).CrossRefADSGoogle Scholar
  5. 5.
    X.N. Shen, P.E. Arratia, Phys. Rev. Lett. 106, 208101 (2011).CrossRefADSGoogle Scholar
  6. 6.
    R.D. Schulman, M. Backholm, W.S. Ryu, K. Dalnoki-Veress, Phys. Rev. E 89, 050701 (2014).CrossRefADSGoogle Scholar
  7. 7.
    R.D. Schulman, M. Backholm, W.S. Ryu, K. Dalnoki-Veress, Phys. Fluids 26, 101902 (2014).CrossRefADSGoogle Scholar
  8. 8.
    P. Sauvage, M. Argentina, J. Drappier, T. Senden, J. Siméon, J.M. Di Meglio, J. Biomech. 44, 1117 (2011).CrossRefGoogle Scholar
  9. 9.
    A. Ghanbari, V. Nock, S. Johari, R. Blaikie, X. Chen, W. Wang, J. Micromech. Microeng. 22, 095009 (2012).CrossRefADSGoogle Scholar
  10. 10.
    Y. Rabets, M. Backholm, K. Dalnoki-Veress, W.S. Ryu, Biophys. J. 107, 1980 (2014).CrossRefADSGoogle Scholar
  11. 11.
    S. Gart, D. Vella, S. Jung, Soft Matter 7, 2444 (2011).CrossRefADSGoogle Scholar
  12. 12.
    J. Yuan, D.M. Raizen, H.H. Bau, Proc. Natl. Acad. Sci. U.S.A. 111, 6865 (2014).CrossRefADSGoogle Scholar
  13. 13.
    M. Backholm, R.D. Schulman, W.S. Ryu, K. Dalnoki-Veress, Phys. Rev. Lett. 113, 138101 (2014).CrossRefADSGoogle Scholar
  14. 14.
    J.T. Pierce-Shimomura, B.L. Chen, J.J. Mun, R. Ho, R. Sarkis, S.L. McIntire, Proc. Natl. Acad. Sci. U.S.A. 105, 20982 (2008).CrossRefADSGoogle Scholar
  15. 15.
    S. Berri, J.H. Boyle, M. Tassieri, I.A. Hope, N. Cohen, HFSP J. 3, 186 (2009).CrossRefGoogle Scholar
  16. 16.
    J.H. Boyle, S. Berri, N. Cohen, Front. Comput. Neurosci. 6, 10 (2012).CrossRefGoogle Scholar
  17. 17.
    S.J. Park, M.B. Goodman, B.L. Pruitt, Proc. Natl. Acad. Sci. U.S.A. 104, 17376 (2007).CrossRefADSGoogle Scholar
  18. 18.
    J. Sznitman, P.K. Purohit, P. Krajacic, T. Lamitina, P.E. Arratia, Biophys. J. 98, 617 (2010).CrossRefGoogle Scholar
  19. 19.
    B.C. Petzold, S.J. Park, P. Ponce, C. Roozeboom, C. Powell, M.B. Goodman, B.L. Pruitt, Biophys. J. 100, 1977 (2011).CrossRefADSGoogle Scholar
  20. 20.
    M. Backholm, W.S. Ryu, K. Dalnoki-Veress, Proc. Natl. Acad. Sci. U.S.A. 110, 4528 (2013).CrossRefADSGoogle Scholar
  21. 21.
    M.J. Colbert, A.N. Raegen, C. Fradin, K. Dalnoki-Veress, Eur. Phys. J. E 30, 117 (2009).CrossRefGoogle Scholar
  22. 22.
    M.J. Colbert, F. Brochard-Wyart, C. Fradin, K. Dalnoki-Veress, Biophys. J. 99, 3555 (2010).CrossRefADSGoogle Scholar
  23. 23.
    D. Gonzalez-Rodriguez, L. Bonnemay, J. Elgeti, S. Dufour, D. Cuvelier, F. Brochard-Wyart, Soft Matter 9, 2282 (2013).CrossRefADSGoogle Scholar
  24. 24.
    J.M. Frostad, M.C. Collins, G.L. Leal, Langmuir 29, 4715 (2013).CrossRefGoogle Scholar
  25. 25.
    J.M. Frostad, M. Seth, S.M. Bernasek, G.L. Leal, Soft Matter 10, 7769 (2014).CrossRefADSGoogle Scholar
  26. 26.
    D. Mitrossilis, J. Fouchard, A. Guiroy, N. Desprat, N. Rodriguez, B. Fabry, A. Asnacios, Proc. Natl. Acad. Sci. U.S.A. 106, 18243 (2009).CrossRefADSGoogle Scholar
  27. 27.
    D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, S.J. Michel, A. Asnacios, Proc. Natl. Acad. Sci. U.S.A. 107, 16518 (2010).CrossRefADSGoogle Scholar
  28. 28.
    S. Brenner, Genetics 77, 71 (1974).Google Scholar
  29. 29.
    Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissue (Springer-Verlag, New York, 1993).Google Scholar
  30. 30.
    B.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids (John Wiley & Sons, New York, 1977).Google Scholar
  31. 31.
    W.W. Graessley, Adv. Polym. Sci. 16, 1 (1974).CrossRefGoogle Scholar
  32. 32.
    K. Dalnoki-Veress, B.G. Nickel, C. Roth, J.R. Dutcher, Phys. Rev. E 59, 2153 (1999).CrossRefADSGoogle Scholar
  33. 33.
    G.N. Cox, S. Staprans, R.S. Edgar, Dev. Biol. 86, 456 (1981).CrossRefGoogle Scholar
  34. 34.
    H. Oxlund, T.T. Andreassen, J. Anat. 131, 611 (1980).Google Scholar
  35. 35.
    N. Phan-Thien, S. Nasseri, L.E. Bilston, Rheol. Acta. 39, 409 (2000).CrossRefGoogle Scholar
  36. 36.
    F.H. Silver, A. Ebrahimi, P.B. Snowhill, Connect. Tissue Res. 43, 569 (2002).CrossRefGoogle Scholar
  37. 37.
    L. Duan, J. Li, C. Li, G. Li, Korea-Aust. Rheol. J. 25, 137 (2013).CrossRefGoogle Scholar
  38. 38.
    J. Karbowski, C.J. Cronin, A. Seah, J.E. Mendel, D. Cleary, P.W. Sternberg, J. Theor. Biol. 242, 652 (2006).CrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Matilda Backholm
    • 1
  • William S. Ryu
    • 2
  • Kari Dalnoki-Veress
    • 1
    • 3
  1. 1.Department of Physics & Astronomy and the Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada
  2. 2.Department of Physics and the Donnelly CentreUniversity of TorontoTorontoCanada
  3. 3.PCT Lab, UMR CNRS 7083 Gulliver, ESPCI ParisTechPSL Research UniversityParisFrance

Personalised recommendations