Contribution to the benchmark for ternary mixtures: Measurement of diffusion and Soret coefficients of ternary system tetrahydronaphtalene-isobutylbenzene-n-dodecane with mass fractions 80-10-10 at 25 °C

  • Quentin GalandEmail author
  • Stéfan Van Vaerenbergh
Regular Article
Part of the following topical collections:
  1. Thermal non-equilibrium phenomena in multi-component fluids


This paper provides the molecular diffusion and Soret coefficients of the ternary system 1,2,3,4-tetrahydronaphtalene, isobutylbenzene, n -dodecane system at mass fractions 0.8-0.1-0.1 and temperature 25 °C for implementation into the benchmark presented in this topical issue. The Soret coefficients are determined by digital interferometry using the data of DSC-DCMIX microgravity experiment. The method used takes into account the influence of the thermal field on the Soret separations and the selection of the image processing techniques results in reproducible Soret coefficients.The diffusion coefficients are obtained by the Open Ended Capillary technique The fitting of the data collected through a set of two complementary experimental runs allows retrieving the four Fickian diffusion coefficients.

Graphical abstract


Topical Issue: Thermal non-equilibrium phenomena in multi-component fluids 


  1. 1.
    M.M. Bou-Ali, A. Ahadi, D. Alonso de Mezquía, Q. Galand, M. Gebhardt, O. Khlybov, W. Köhler, M. Larrañaga, J.C. Legros, T. Lyubimova, A. Mialdun, I. Ryzhkov, M.Z. Saghir, V. Shevtsova, S. Van Varenbergh, ``Benchmark values for the Soret, thermodiffusion and molecular diffusion coefficients of the ternary mixture tetralin+isobutylbenzene+$n$-dodecane with 0.8-0.1-0.1 mass fraction'', this topical issue.Google Scholar
  2. 2.
    V. Shevtsova, T. Lyubimova, Z. Saghir, D. Melnikov, Y. Gaponenko, V. Sechenyh, J.C. Legros, A. Mialdun, J. Phys.: Conf. Ser. 327, 012031 (2011) DOI:10.1088/1742-6596/327/1/012031.ADSGoogle Scholar
  3. 3.
    S.R. de Groot, P. Mazur, Non-equilibrium thermodynamics (Dover, New-York, 1984).Google Scholar
  4. 4.
    A. Ahadi, S. Van Vaerenbergh, M.Z. Saghir, J. Chem. Phys. 138, 204201 (2013) DOI:10.1063/1.4802984.CrossRefADSGoogle Scholar
  5. 5.
    J.S. Anderson, K. Saddington, J. Chem. Soc. 2, S381 (1975) DOI:10.1039/JR949000S381.Google Scholar
  6. 6.
    J.N. Agar, V.M.M. Lobo, J. Chem. Soc. Faraday Trans. 1 71, 1659 (1975) DOI:10.1039/F19757101659.CrossRefGoogle Scholar
  7. 7.
    N.D. Kosov, I.V. Poyarkov, Meas. Techniques 37, 581 (1994) DOI:10.1007/BF00980450.CrossRefGoogle Scholar
  8. 8.
    J.F. Dutrieux, J.K. Platten, G. Chavepeyer, M.M. Bou-Ali, J. Phys. Chem. B 106, 6104 (2002) DOI:10.1021/jp013945r.CrossRefGoogle Scholar
  9. 9.
    A. Leahy-Dios, M.M. Bou Ali, J.K. Platten, A. Firoozabadi, J. Chem. Phys. 122, 234502 (2005) DOI:10.1063/1.1924503.CrossRefADSGoogle Scholar
  10. 10.
    Q. Galand, M. Luhmer, S. Van Vaerenbergh, High Temp. High Pres. 38, 329 (2010).Google Scholar
  11. 11.
    M. Larranaga, M. Bou-Ali, D. Soler, M. Martinez-Aguirre, A. Mialdun, M. Shevtsova, C. R. Mec. 341, 356 (2013) DOI:10.1016/j.crme.2013.01.008.CrossRefADSGoogle Scholar
  12. 12.
    J.E. Greivenkamp, J.H. Bruning, ``Phase-shifting interferometry,'' in Optical Shop Testing, edited by D. Malacara (Wiley, New York, 1992).Google Scholar
  13. 13.
    M. Takeda, H. Ina, J. Kobayashi, J. Opt. Soc. Am. 72, 156 (1982).CrossRefADSGoogle Scholar
  14. 14.
    T. Kreis, J. Opt. Soc. Am. 3, 347 (1986) DOI:10.1364/JOSAA.3.000847.CrossRefGoogle Scholar
  15. 15.
    P. Hari Haran, B.F. Oreb, T. Eiju, Appl. Opt. 26, 2504 (1987).CrossRefADSGoogle Scholar
  16. 16.
    Zhaoyang Wang, Bongtae Han, Opt. Lett. 29, 1671 (2004) DOI:10.1364/OL.29.001671.CrossRefADSGoogle Scholar
  17. 17.
    A. Mialdun, V. Shevtsova, J. Chem. Phys. 134, 044524 (2011) DOI:10.1063/1.3546036.CrossRefADSGoogle Scholar
  18. 18.
    A. Mialdun, V. Shevtsova, C. R. Méc. 339, 462 (2011) DOI:10.1016/j.crme.2013.02.001.CrossRefGoogle Scholar
  19. 19.
    D.J. Bone, Appl. Opt. 30, 3627 (1991) DOI:10.1364/AO.30.003627.CrossRefADSGoogle Scholar
  20. 20.
    M. Costantini, IEEE Trans GARS 36, 813 (1998) DOI:10.1109/36.673674.ADSGoogle Scholar
  21. 21.
    G. Wittko, W. Köhler, Philos. Mag. 83, 2017 (2003).CrossRefGoogle Scholar
  22. 22.
    S. Van Vaerenbergh, J.C. Legros, Phys. Rev. A 41, 6727 (1990) DOI:10.1103/PhysRevA.41.6727.CrossRefADSGoogle Scholar
  23. 23.
    V.V. Sechenyh, J.C. Legros, V. Shevtsova, J. Chem. Thermodyn. 62, 64 (2013) DOI:10.1016/j.jct.2013.01.026.CrossRefGoogle Scholar
  24. 24.
    A. Königer, H. Wunderlich, W. Köhler, J. Chem. Phys. 132, 174506 (2010) DOI:10.1063/1.3421547.CrossRefADSGoogle Scholar
  25. 25.
    M. Larranaga, D. Andrew, M. Bou-Ali, J. Chem. Phys. 140, 984503 (2014) DOI:10.1063/1.4864189.CrossRefGoogle Scholar
  26. 26.
    Q. Galand, S. Van Vaerenbergh, F. Montel, Energy Fuels 22, 770 (2008) DOI:10.1021/ef7004332.CrossRefGoogle Scholar
  27. 27.
    M.J.D. Powel, Math. Prog. 4, 193 (1973) DOI:10.1007/BF01584660.CrossRefGoogle Scholar
  28. 28.
    R. Taylor, R. Krishna, Multicomponent Mass Transfer (Wiley, New York, 1976).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Microgravity Research CenterUniversité libre de Bruxelles, Dept. Chemical PhysicsBrusselsBelgium

Personalised recommendations