Contribution to the benchmark for ternary mixtures: Measurement of the Soret and thermodiffusion coefficients of tetralin+isobutylbenzene+n-dodecane at a composition of (0.8/0.1/0.1) mass fractions by two-color optical beam deflection

  • M. Gebhardt
  • W. Köhler
Regular Article
Part of the following topical collections:
  1. Thermal non-equilibrium phenomena in multi-component fluids


Within the framework of an international benchmark test we have performed measurements of the Soret and thermodiffusion coefficients of the organic ternary mixture (0.8/0.1/0.1 mass fraction) of 1,2,3,4-tetrahydronaphthaline (THN), isobutylbenzene (IBB) and n -dodecane (n C12) at 298.15K by means of a two-color optical beam deflection technique (OBD). The data evaluation procedure is based on a least squares fitting routine for an approximate analytical solution for the Soret cell problem. The condition number of the contrast factor matrix and standard error propagation are used for an error estimation for the measured Soret and thermodiffusion coefficients. The Soret coefficients obtained are S T(THN) = (1.20±0.09)×10-3 K^-1, S T(IBB) = (- 0.34±0.14)×10-3 K^-1, and S T(nC12) = (- 0.86±0.06)×10-3 K^-1 and the corresponding thermodiffusion coefficients are D T(THN) = (0.72±0.26)×10-12 m^2(s K)^-1, D T(IBB) = (- 0.22±0.42)×10-12 m^2(s K)^-1, and D T(nC12) = (- 0.50±0.16)×10-12 m^2(s K)^-1. These results will be used as ground-based reference data for the DCMIX project, where thermodiffusion experiments of ternary mixtures are measured in a microgravity environment aboard the International Space Station (ISS).

Graphical abstract


Topical Issue: Thermal non-equilibrium phenomena in multi-component fluids 


  1. 1.
    J.K. Platten et al., Philos. Mag. 83, 1965 (2003)CrossRefADSGoogle Scholar
  2. 2.
    C. Leppla, S. Wiegand, Philos. Mag. 83, 1989 (2003)CrossRefADSGoogle Scholar
  3. 3.
    G. Wittko, W. Köhler, Philos. Mag. 83, 1973 (2003)CrossRefADSGoogle Scholar
  4. 4.
    M.M. Bou-Ali et al., Philos. Mag. 83, 2011 (2003)CrossRefADSGoogle Scholar
  5. 5.
    J.K. Platten, M.M. Bou-Ali, J.F. Dutrieux, Philos. Mag. 83, 2001 (2003)CrossRefADSGoogle Scholar
  6. 6.
    P. Costesèque, J.-C. Loubet, Philos. Mag. 83, 2017 (2003)CrossRefADSGoogle Scholar
  7. 7.
    A. Mialdun, V. Shevtsova, J. Chem. Phys. 134, 044524 (2011)CrossRefADSGoogle Scholar
  8. 8.
    A. Königer, B. Meier, W. Köhler, Philos. Mag. 89, 907 (2009)CrossRefADSGoogle Scholar
  9. 9.
    P. Naumann et al., J. Phys. Chem. B 116, 13889 (2012)CrossRefGoogle Scholar
  10. 10.
    K.B. Haugen, A. Firoozabadi, J. Phys. Chem. B 110, 17678 (2006)CrossRefGoogle Scholar
  11. 11.
    A. Königer, H. Wunderlich, W. Köhler, J. Chem. Phys. 132, 174506 (2010)CrossRefADSGoogle Scholar
  12. 12.
    A. Mialdun et al., Micrograv. Sci. Technol. 25, 83 (2013)CrossRefGoogle Scholar
  13. 13.
    M. Gebhardt et al., J. Chem. Phys. 138, 114503 (2013)CrossRefADSGoogle Scholar
  14. 14.
    R. Piazza, A. Guarino, Phys. Rev. Lett. 88, 208302 (2002)CrossRefADSGoogle Scholar
  15. 15.
    P. Kolodner, H. Williams, C. Moe, J. Chem. Phys. 88, 6512 (1988)CrossRefADSGoogle Scholar
  16. 16.
    A. Becker, W. Köhler, B. Müller, Ber. Bunsenges. Phys. Chem. 99, 600 (1995)CrossRefGoogle Scholar
  17. 17.
    V. Shevtsova, V. Sechenyh, A. Nepomnyashchy, J.C. Legros, Philos. Mag. 91, 3498 (2011)CrossRefADSGoogle Scholar
  18. 18.
    V. Sechenyh, J.C. Legros, V. Shevtsova, J. Chem. Thermodyn. 62, 64 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Gebhardt
    • 1
  • W. Köhler
    • 1
  1. 1.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations