Feedback control of flow vorticity at low Reynolds numbers

Open Access
Regular Article

Abstract

Our aim is to explore strategies of feedback control to design and stabilize novel dynamic flow patterns in model systems of complex fluids. To introduce the control strategies, we investigate the simple Newtonian fluid at low Reynolds number in a circular geometry. Then, the fluid vorticity satisfies a diffusion equation. We determine the mean vorticity in the sensing area and use two control strategies to feed it back into the system by controlling the angular velocity of the circular boundary. Hysteretic feedback control generates self-regulated stable oscillations in time, the frequency of which can be adjusted over several orders of magnitude by tuning the relevant feedback parameters. Time-delayed feedback control initiates unstable vorticity modes for sufficiently large feedback strength. For increasing delay time, we first observe oscillations with beats and then regular trains of narrow pulses. Close to the transition line between the resting fluid and the unstable modes, these patterns are relatively stable over long times.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    H. Stone, A. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).CrossRefADSGoogle Scholar
  2. 2.
    T. Squires, S. Quake, Rev. Mod. Phys. 77, 977 (2005).CrossRefADSGoogle Scholar
  3. 3.
    G.M. Whitesides, Nature 442, 368 (2006).CrossRefADSGoogle Scholar
  4. 4.
    H. Amini, E. Sollier, M. Masaeli, Y. Xie, B. Ganapathysubramanian, H.A. Stone, D. Di Carlo, Nat. Commun. 4, 1826 (2013).CrossRefADSGoogle Scholar
  5. 5.
    D. Rothstein, E. Henry, J. Gollub, Nature 401, 770 (1999).CrossRefADSGoogle Scholar
  6. 6.
    B. Thomases, M. Shelley, Phys. Rev. Lett. 103, 094501 (2009).CrossRefADSGoogle Scholar
  7. 7.
    P.E. Arratia, C.C. Thomas, J. Diorio, J.P. Gollub, Phys. Rev. Lett. 96, 144502 (2006).CrossRefADSGoogle Scholar
  8. 8.
    L. Pan, A. Morozov, C. Wagner, P.E. Arratia, Phys. Rev. Lett. 110, 174502 (2013).CrossRefADSGoogle Scholar
  9. 9.
    A. Groisman, V. Steinberg, Nature 405, 53 (2000).CrossRefADSGoogle Scholar
  10. 10.
    A. Groisman, V. Steinberg, Nature 410, 905 (2001).CrossRefADSGoogle Scholar
  11. 11.
    G.I. Taylor, Philos. Trans. R. Soc. London, Ser. A 223, 289 (1923).CrossRefADSMATHGoogle Scholar
  12. 12.
    R. Bird, R. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Vol. 1, 2nd edition, Fluid Mechanics (A Wiley-Interscience Publication, John Wiley & Sons, 1987).Google Scholar
  13. 13.
    A. Friedman, L.-S. Jiang, Commun. Part. Diff. Eq. 13, 515 (1988).CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    T. Seidman, Switching Systems and Periodicity (Springer, 1989).Google Scholar
  15. 15.
    P. Gurevich, W. Jäger, A. Skubachevskii, SIAM J. Math. Anal. 41, 733 (2009).CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    P. Gurevich, Discrete Cont. Dyn. Syst. 29, 1041 (2010).CrossRefMathSciNetGoogle Scholar
  17. 17.
    P. Gurevich, S. Tikhomirov, J. Dyn. Differ. Eq. 23, 923 (2011).CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    K. Pyragas, Phys. Lett. A 170, 421 (1992).CrossRefADSGoogle Scholar
  19. 19.
    P. Hövel, E. Schöll, Phys. Rev. E 72, 046203 (2005).CrossRefGoogle Scholar
  20. 20.
    E. Schöll, G. Hiller, P. Hövel, M.A. Dahlem, Philos. Trans. R. Soc. London, Ser. A 367, 1079 (2009).CrossRefADSMATHGoogle Scholar
  21. 21.
    O. Lüthje, S. Wolff, G. Pfister, Phys. Rev. Lett. 86, 1745 (2001).CrossRefADSGoogle Scholar
  22. 22.
    K. Lichtner, S.H.L. Klapp, EPL 92, 40007 (2010).CrossRefADSGoogle Scholar
  23. 23.
    K. Lichtner, A. Pototsky, S.H.L. Klapp, Phys. Rev. E 86, 051405 (2012).CrossRefADSGoogle Scholar
  24. 24.
    S.A.M. Loos, R. Gernert, S.H.L. Klapp, Phys. Rev. E 89, 052136 (2014).CrossRefADSGoogle Scholar
  25. 25.
    D.A. Strehober, E. Schöll, S.H.L. Klapp, Phys. Rev. E 88, 062509 (2013).CrossRefADSGoogle Scholar
  26. 26.
    O. Beck, A. Amann, E. Schöll, J. Socolar, W. Just, Phys. Rev. E 66, 016213 (2002).CrossRefADSGoogle Scholar
  27. 27.
    S. Hata, H. Nakao, A.S. Mikhailov, EPL 98, 64004 (2012).CrossRefADSGoogle Scholar
  28. 28.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, 1987).Google Scholar
  29. 29.
    D.G. Duffy, Green's Functions with Applications (Taylor & Francis, 2001).Google Scholar
  30. 30.
    K. Pyragas, Phys. Lett. A 206, 323 (1995).CrossRefADSMATHMathSciNetGoogle Scholar
  31. 31.
    R.G. Larson, E.S.G. Shaqfeh, S.J. Muller, J. Fluid Mech. 218, 573 (1990).CrossRefADSMATHMathSciNetGoogle Scholar
  32. 32.
    A.J. Bray, Philos. Trans. R. Soc. London, Ser. A 361, 781 (2003).CrossRefADSMATHMathSciNetGoogle Scholar
  33. 33.
    S. Berti, G. Boffetta, M. Cencini, A. Vulpiani, Phys. Rev. Lett. 95, 224501 (2005).CrossRefADSGoogle Scholar
  34. 34.
    J. Liu, L. Dedè, J.A. Evans, M.J. Borden, T.J. Hughes, J. Comput. Phys. 242, 321 (2013).CrossRefADSMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany
  2. 2.Institut für Mathematik 1Freie Universität BerlinBerlinGermany

Personalised recommendations