Role of geometrical shape in like-charge attraction of DNA

Regular Article

Abstract

While the phenomenon of like-charge attraction of DNA is clearly observed experimentally and in simulations, mean-field theories fail to predict it. Kornyshev et al. argued that like-charge attraction is due to DNA's helical geometry and hydration forces. Strong-coupling (SC) theory shows that attraction of like-charged rods is possible through ion correlations alone at large coupling parameters, usually by multivalent counterions. However for SC theory to be applicable, counterion-counterion correlations perpendicular to the DNA strands need to be sufficiently small, which is not a priori the case for DNA even with trivalent counterions. We study a system containing infinitely long DNA strands and trivalent counterions by computer simulations employing varying degrees of coarse-graining. Our results show that there is always attraction between the strands, but its magnitude is indeed highly dependent on the specific shape of the strand. While discreteness of the charge distribution has little influence on the attractive forces, the role of the helical charge distribution is considerable: charged rods maintain a finite distance in equilibrium, while helices collapse to close contact with a phase shift of π, in full agreement with SC predictions. The SC limit is applicable because counterions strongly bind to the charged sites of the helices, so that helix-counterion interactions dominate over counterion-counterion interactions. Thus DNA's helical geometry is not crucial for like-charge DNA attraction, but strongly enhances it, and electrostatic interactions in the strong-coupling limit are sufficient to explain this attraction.

Graphical abstract

Keywords

Soft Matter: Polymers and Polyelectrolytes 

References

  1. 1.
    E. Trizac, J.-L. Raimbault, Phys. Rev. E 60, 6530 (1999).CrossRefADSGoogle Scholar
  2. 2.
    E. Trizac, Phys. Rev. E 62, R1465 (2000).CrossRefADSGoogle Scholar
  3. 3.
    J.C. Neu, Phys. Rev. Lett. 82, 1072 (1999).CrossRefADSGoogle Scholar
  4. 4.
    J.E. Sader, D.Y. Chan, J. Colloid Interface Sci. 213, 268 (1999).CrossRefGoogle Scholar
  5. 5.
    J. Widom, R.L. Baldwin, J. Mol. Biol. 144, 431 (1980).CrossRefGoogle Scholar
  6. 6.
    R. Podgornik, D. Rau, A. Parsegian, Biophys. J. 66, 962 (1994).CrossRefGoogle Scholar
  7. 7.
    V.A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).CrossRefGoogle Scholar
  8. 8.
    L. Guldbrand, B. Jönsson, H. Wennerström, P. Linse, J. Chem. Phys. 80, 2221 (1984).CrossRefADSGoogle Scholar
  9. 9.
    N. Grønbech-Jensen, R.J. Mashl, R.F. Bruinsma, W.M. Gelbart, Phys. Rev. Lett. 78, 2477 (1997).CrossRefADSGoogle Scholar
  10. 10.
    E. Allahyarov, I. D'Amico, H. Löwen, Phys. Rev. Lett. 81, 1334 (1998).CrossRefADSGoogle Scholar
  11. 11.
    M. Deserno, A. Arnold, C. Holm, Macromolecules 36, 249 (2003).CrossRefADSGoogle Scholar
  12. 12.
    R. Messina, J. Phys.: Condens. Matter 21, 113102 (2009).ADSGoogle Scholar
  13. 13.
    A.A. Kornyshev, S. Leikin, J. Chem. Phys. 107, 3656 (1997).CrossRefADSGoogle Scholar
  14. 14.
    A.G. Cherstvy, J. Phys.: Condens. Matter 17, 1363 (2005).ADSGoogle Scholar
  15. 15.
    A.G. Moreira, R.R. Netz, Europhys. Lett. 52, 705 (2000).CrossRefADSGoogle Scholar
  16. 16.
    A.G. Moreira, R.R. Netz, Phys. Rev. Lett. 87, 078301 (2001).CrossRefADSGoogle Scholar
  17. 17.
    A.G. Moreira, R.R. Netz, in Electrostatic Effects in Soft Matter and Biophysics Vol. 46 of NATO Science Series II - Mathematics, Physics and Chemistry, edited by C. Holm, P. Kékicheff, R. Podgornik (Kluwer Academic Publishers, Dordrecht, NL, 2001).Google Scholar
  18. 18.
    A. Naji, A. Arnold, C. Holm, R.R. Netz, Europhys. Lett. 67, 130 (2004).CrossRefADSGoogle Scholar
  19. 19.
    M. Kanduč, J. Dobnikar, R. Podgornik, Soft Matter 5, 868 (2009).CrossRefADSGoogle Scholar
  20. 20.
    A. Arnold, C. Holm, Eur. Phys. J. E 27, 21 (2008).CrossRefADSGoogle Scholar
  21. 21.
    R.R. Netz, Eur. Phys. J. E 5, 557 (2001).CrossRefGoogle Scholar
  22. 22.
    M. Kanduč, A. Naji, R. Podgornik, J. Chem. Phys. 132, 224703 (2010).CrossRefADSGoogle Scholar
  23. 23.
    A. Naji, R. Netz, Eur. Phys. J. E 13, 43 (2004).CrossRefGoogle Scholar
  24. 24.
    S. Kesselheim, W. Müller, C. Holm, Phys. Rev. Lett. 112, 018101 (2014).CrossRefADSGoogle Scholar
  25. 25.
    A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Röhm, P. Košovan, C. Holm, in Meshfree Methods for Partial Differential Equations VI, Vol. 89 of Lecture Notes in Computational Science and Engineering, edited by M. Griebel, M.A. Schweitzer (Springer, 2013) pp. 1--23.Google Scholar
  26. 26.
    H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006).CrossRefADSGoogle Scholar
  27. 27.
    A. Arnold, C. Holm, J. Chem. Phys. 123, 144103 (2005).CrossRefADSGoogle Scholar
  28. 28.
    J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971).CrossRefADSGoogle Scholar
  29. 29.
    D. Frenkel, B. Smit, Understanding Molecular Simulation, second edition (Academic Press, San Diego, 2002).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut für ComputerphysikUniversität StuttgartStuttgartGermany

Personalised recommendations