On-and-off dynamics of a creeping frictional system

  • Baptiste Blanc
  • Jean-Christophe Géminard
  • Luis A. Pugnaloni
Regular Article


We report on the dynamics of a model frictional system submitted to minute external perturbations. The system consists of a chain of sliders connected through elastic springs that rest on an incline. By introducing cyclic expansions and contractions of the rest length of the springs, we induce the reptation of the chain. Decreasing the amplitude of the perturbation below a critical value, we observe an intermittent creep regime characterized by alternated periods of reptation (flowing state) and rest (quiescent state). A further decrease of the perturbation leads to the disappearance of the reptation. The width of the transition region between the continuous creep and the full stop (i.e., the range of excitation amplitudes where the intermittent creep is observed) is shown to depend on the difference between the static (μs) and the dynamic (μd) friction coefficients. For μs = μd the intermittent creep is not observed. Studying the statistical features of the intermittent creep regime for any given perturbation amplitude, we find that the time the system resides in each state (flowing or quiescent) suggests that: i) reptation events are uncorrelated, and ii) rest events are history dependent. We show that this latter history dependence is consistent with the aging of the stress state inside the chain of sliders during the quiescent periods.

Graphical abstract


Flowing Matter: Granular Matter 


  1. 1.
    J. Duran, Sands, Powders, and Grains: An Introduction to the Physics of Granular Materials (Springer, New York, 2000).Google Scholar
  2. 2.
    L. Knopoff, X.X. Ni, Geophys. J. Int. 147, F1 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    R. Harich, T. Darnige, R. Kolb, E. Clément, EPL 96, 54003 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    A. Janda, D. Maza, A. Garcimartín, E. Kolb, J. Lanuza, E. Clément, EPL 87, 24002 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    C. Mankoc, A. Garcimartín, I. Zuriguel, D. Maza, L.A. Pugnaloni, Phys. Rev. E 80, 011309 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    T. Divoux, H. Gayvallet, J.-C. Géminard, Phys. Rev. Lett. 101, 148303 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    T. Divoux, Pap. Phys. 2, 020006 (2010).CrossRefGoogle Scholar
  8. 8.
    K. To, P.Y. Lai, H.K. Pak, Phys. Rev. Lett. 86, 71 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    I. Zuriguel, L.A. Pugnaloni, A. Garcimartín, D. Maza, Phys. Rev. E 68, 030301 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    B. Blanc, L.A. Pugnaloni, J.-C. Géminard, Phys. Rev. E 84, 061303 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    J.R. Rice, J. Geophys. Res. B 98, 9885 (1993).ADSCrossRefGoogle Scholar
  12. 12.
    C.R. Myers, J.S. Langer, Phys. Rev. E 47, 3048 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    R. Burridge, L. Knopoff, Bull. Seismol. Soc. Am. 57, 341 (1967).Google Scholar
  14. 14.
    M. de Sousa Vieira, Phys. Rev. A 46, 6288 (1992).ADSCrossRefGoogle Scholar
  15. 15.
    S. Aumatre, S. Fauve, S. McNamara, P. Poggi, Eur. Phys. J. B 19, 449 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    D.S. Amundsen, J. Scheibert, K. Thogersen, J. Tromborg, A. Malthe-Sorenssen, Tribol. Lett. 45, 357 (2012).CrossRefGoogle Scholar
  17. 17.
    O.M. Braun, I. Barel, M. Urbakh, Phys. Rev. Lett. 103, 194301 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    S. Maegawa, A. Suzuki, K. Nakano, Tribol. Lett. 38, 313 (2010).CrossRefGoogle Scholar
  19. 19.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).Google Scholar
  20. 20.
    C. Mankoc, A. Janda, R. Arévalo, J.M. Pastor, I. Zuriguel, A. Garcimartín, D. Maza, Granulas Matter 9, 407 (2007).CrossRefGoogle Scholar
  21. 21.
    A. Janda, R. Harich, I. Zuriguel, D. Maza, P. Cixous, A. Garcimartín, Phys. Rev. E 79, 031302 (2009).ADSCrossRefGoogle Scholar
  22. 22.
    S. Ciliberto, C. Laroche, J. Phys. 4, 223 (1994).Google Scholar
  23. 23.
    P.W. Hammer, N. Platt, S.M. Hammel, J.F. Heagy, B.D. Lee, Phys. Rev. Lett. 73, 1095 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    F. Rödelsperger, A. Cenys, H. Benner, Phys. Rev. Lett. 75, 2594 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    D.L. Feng, C.X. Yu, J.L. Xie, W.X. Ding, Phys. Rev. E 58, 3678 (1998).ADSCrossRefGoogle Scholar
  26. 26.
    T. John, R. Stannarius, U. Behn, Phys. Rev. Lett. 83, 749 (1999).ADSCrossRefGoogle Scholar
  27. 27.
    A. Vella, A. Setaro, B. Piccirillo, E. Santamato, Phys. Rev. E 67, 051704 (2003).ADSCrossRefGoogle Scholar
  28. 28.
    P.A. Gago, D.R. Parisi, L.A. Pugnaloni, Faster is slower effect in granular flows, in: Traffic and Granular Flows '11, edited by V.V. Kozlov, A.P. Buslaev, A.S. Bugaev, M.V. Yashina, A. Schadschneider, M. Schreckenberg (Springer, Moscow, 2013) p. 317.Google Scholar
  29. 29.
    P.G. de Gennes, C.R. Acad. Sci. (Paris) 327, 267 (1999).ADSMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Baptiste Blanc
    • 1
  • Jean-Christophe Géminard
    • 1
  • Luis A. Pugnaloni
    • 2
  1. 1.Laboratoire de Physique, Ecole Normale Supérieure de Lyon, CNRSUniversité de LyonLyon cedex 07France
  2. 2.Departamento de Ingenierıa Mecánica, Facultad Regional La PlataUniversidad Tecnológica NacionalLa PlataArgentina

Personalised recommendations