Strain rate effects on symmetric diblock copolymer liquid bridges: Order-induced stability of polymer fibres

Regular Article

Abstract

Optical microscopy is used to study the effect of lamellar order on the evolution of polymer-melt bridges. Measurements are performed on symmetric diblock copolymers and linear homopolymers in the melt state. Diblock copolymer bridges measured in the disordered phase are shown to exhibit the same strain rate response as their homopolymer counterparts: shear thinning at low strain rates and shear thickening at high strain rates. However, when measured in the ordered phase, copolymer-melt bridges demonstrate an increased effective viscosity due to the lamellar order and a shear thinning response over the entire range of strain rates probed. The increased viscosity demonstrates an enhanced stability in lamellae forming diblock liquid bridges, presumed to be caused by the isotropic orientational order of lamellar domains that provide energy barriers to flow within the bridge. The shear thinning can be understood as an alignment of lamellae along the axis of the bridge due to flow, facilitating unimpeded diffusion of polymer out of the liquid bridge along lamellar boundaries.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    J. Eggers, E. Villermaux, Rep. Prog. Phys. 71, 036601 (2008).CrossRefADSGoogle Scholar
  2. 2.
    D.H. Reneker, A.L. Yarin, Polymer 49, 2387 (2008).CrossRefGoogle Scholar
  3. 3.
    B.J. de Gans, P.C. Duineveld, U.S. Schubert, Adv. Mater. 16, 203 (2004).CrossRefGoogle Scholar
  4. 4.
    C. Arcoumanis, J.H. Whitelaw, J. Mech. Engin. Sci. 201, 57 (1987).CrossRefGoogle Scholar
  5. 5.
    L.E. Johns, R. Narayanan, Interfacial Instability (Springer, New York, 2002).Google Scholar
  6. 6.
    D.T. Papageorgiou, Phys. Fluids 7, 1529 (1995).MathSciNetCrossRefMATHADSGoogle Scholar
  7. 7.
    G.H. McKinley, A. Tripathi, J. Rheol. 44, 653 (2000).CrossRefADSGoogle Scholar
  8. 8.
    V.M. Entov, E.J. Hinch, J. Non-Newtonian Fluid Mech. 72, 31 (1997).CrossRefGoogle Scholar
  9. 9.
    M.I. Kolte, P. Szabo, J. Rheol. 43, 609 (1999).CrossRefADSGoogle Scholar
  10. 10.
    Y. Amarouchene, D. Bonn, J. Meunier, H. Kellay, Phys. Rev. Lett. 86, 3558 (2001).CrossRefADSGoogle Scholar
  11. 11.
    S.L. Anna, G.H. McKinley, J. Rheol. 45, 115 (2001).CrossRefADSGoogle Scholar
  12. 12.
    C. Clasen, J. Eggers, M.A. Fontelos, J. Li, G.H. McKinley, J. Fluid Mech. 556, 283 (2006).CrossRefMATHADSGoogle Scholar
  13. 13.
    R. Sattler, C. Wagner, J. Eggers, Phys. Rev. Lett. 100, 164502 (2008).CrossRefADSGoogle Scholar
  14. 14.
    P.P. Bhat, S. Appathurai, H.M.T., M. Pasquali, G.H. McKinley, O.A. Basaran, Nat. Phys. 6, 625 (2010).CrossRefGoogle Scholar
  15. 15.
    R. Sattler, S. Gier, J. Eggers, C. Wagner, Phys. Fluids 24, 023101 (2012).CrossRefADSGoogle Scholar
  16. 16.
    A.V. Bazilevskii, Fluid Dyn. 48, 97 (2013).CrossRefADSGoogle Scholar
  17. 17.
    J. Eggers, Phys. Fluids 26, 033106 (2014).CrossRefADSGoogle Scholar
  18. 18.
    A. Bach, K. Almdal, H.K. Rasmussen, O. Hassager, Macromolecules 36, 5174 (2003).CrossRefADSGoogle Scholar
  19. 19.
    M.H. Wagner, S. Kheirandish, O. Hassager, J. Rheol. 49, 1317 (2005).CrossRefADSGoogle Scholar
  20. 20.
    Y. Wang, P. Boukany, S.Q. Wang, X. Wang, Phys. Rev. Lett. 99, 237801 (2007).CrossRefADSGoogle Scholar
  21. 21.
    H.K. Rasmussen, K. Yu, Phys. Rev. Lett. 107, 126001 (2011).CrossRefADSGoogle Scholar
  22. 22.
    M.H. Wagner, V.H. Rolon-Garrido, J. Rheol. 56, 1279 (2012).CrossRefADSGoogle Scholar
  23. 23.
    W.W. Graessley, Adv. Polym. Sci. 16, 1 (1974).CrossRefGoogle Scholar
  24. 24.
    C. Clasen, J. Bico, V. Entov, G.H. McKinley, J. Fluid Mech. 636, 5 (2009).MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    G.H. Fredrickson, F.S. Bates, Annu. Rev. Mater. Sci. 26, 501 (1996).CrossRefADSGoogle Scholar
  26. 26.
    M.J. Fasolka, A.M. Mayes, Annu. Rev. Mater. Res. 31, 323 (2001).CrossRefADSGoogle Scholar
  27. 27.
    M. Schulz, A. Khandpur, F.S. Bates, K. Almdal, K. Mortensen, D. Hajduk, S. Gruner, Macromolecules 29, 2857 (1996).CrossRefADSGoogle Scholar
  28. 28.
    J.H. Rosedale, F.S. Bates, Macromolecules 23, 2329 (1990).CrossRefADSGoogle Scholar
  29. 29.
    S. Wu, J. Phys. Chem. 74, 632 (1970).CrossRefGoogle Scholar
  30. 30.
    M.L. Williams, R.F. Landel, J.D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).CrossRefGoogle Scholar
  31. 31.
    J.E. Mark (Editor) Physical Properties of Polymers Handbook (AIP Press, New York, 1996).Google Scholar
  32. 32.
    A.B. Croll, A.C. Shi, K. Dalnoki-Veress, Phys. Rev. E 80, 051803 (2009).CrossRefADSGoogle Scholar
  33. 33.
    Y. Takahashi, N. Ochiai, Y. Matsushita, I. Noda, Polym. J. 28, 1065 (1996).CrossRefGoogle Scholar
  34. 34.
    A.B. Croll, M.W. Matsen, A.C. Shi, K. Dalnoki-Veress, Eur. Phys. J. E 27, 407 (2008).CrossRefGoogle Scholar
  35. 35.
    D. Duque, K. Katsov, M. Schick, J. Chem. Phys. 117, 10315 (2002).CrossRefADSGoogle Scholar
  36. 36.
    V.K. Gupta, R. Krishnamoorti, Z.R. Chen, J.A. Kornfield, S.D. Smith, M.M. Satkowski, J.T. Grothaus, Macromolecules 29, 875 (1996).CrossRefADSGoogle Scholar
  37. 37.
    A.P. Marencic, D.H. Adamson, P.M. Chaikin, R.A. Register, Phys. Rev. E 81, 011503 (2010).CrossRefADSGoogle Scholar
  38. 38.
    G. Singh, K.G. Yager, B. Berry, H.C. Kim, A. Karim, ACS Nano 6, 10335 (2012).CrossRefGoogle Scholar
  39. 39.
    S. Pujari, M.A. Keaton, P.M. Chaikin, R.A. Register, Soft Matter 8, 5858 (2012).CrossRefGoogle Scholar
  40. 40.
    B.L. Peters, A. Ramirez-Hernandez, D.Q. Pike, M. Muller, Macromolecules 45, 8109 (2012).CrossRefADSGoogle Scholar
  41. 41.
    K.A. Koppi, M. Tirrell, F.S. Bates, Phys. Rev. Lett. 70, 1449 (1993).CrossRefADSGoogle Scholar
  42. 42.
    L. You, Y.D. He, Y. Zhao, Z.Y. Lu, J. Chem. Phys. 129, 204901 (2008).CrossRefADSGoogle Scholar
  43. 43.
    T.P. Russell, R.P. Hjelm, P.A. Seeger, Macromolecules 23, 890 (1990).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Physics & Astronomy and the Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada
  2. 2.Laboratoire de Physico-Chimie Théorique, UMR CNRS 7083 Gulliver, ESPCI ParisTechPSL Research UniversityParisFrance

Personalised recommendations