The role of a diamondoid as a hydrogen donor or acceptor in probing DNA nucleobases

  • Frank C. Maier
  • Ganesh Sivaraman
  • Maria FytaEmail author
Regular Article


It has been shown that diamondoids can interact with DNA by forming relatively strong hydrogen bonds to DNA units, such as nucleobases. For this interaction to occur the diamondoids must be chemically modified in order to provide donor/acceptor groups for the hydrogen bond. We show here that the exact arrangement of an amine-modified adamantane with respect to a neighboring nucleobase has a significant influence on the strength of the hydrogen bond. Whether the diamondoid acts as a hydrogen donor or acceptor in the hydrogen binding to the nucleobase affects the electronic structure and thereby the electronic band-gaps of the diamondoid-nucleobase complex. In a donor arrangement of the diamondoid close to a nucleobase, the interaction energies are weak, but the electronic band-gaps differ significantly. Exactly the opposite trend is observed in an acceptor arrangement of the diamondoid. In each of these cases the frontier orbitals of the diamondoid and the nucleobase play a different role in the binding. The results are discussed in view of a diamondoid-based biosensing device.

Graphical abstract


Soft Matter: Functional Materials and Nanodevices 


  1. 1.
    J.E. Dahl, S.G. Liu, R.M.K. Carlson, Science 299, 96 (2003)CrossRefADSGoogle Scholar
  2. 2.
    M.A. Gunawan et al., New. J. Chem. 38, 28 (2014)CrossRefGoogle Scholar
  3. 3.
    H. Schwertfeger, A.A. Fokin, P.R. Schreiner, Angew. Chem. Int. Ed. Engl. 47, 1022 (2008)CrossRefGoogle Scholar
  4. 4.
    W.L. Yang et al., Science 316, 1460 (2007)CrossRefADSGoogle Scholar
  5. 5.
    Y. Wang, E. Kioupakis, X. Lu, D. Wegner, R. Yamachika, J.E. Dahl, R.M.K. Carlson, S.G. Louie, M.F. Crommie, Nat. Mater. 7, 38 (2008)CrossRefADSGoogle Scholar
  6. 6.
    G. Zhang, Phys. Today 66, 59 (2013)CrossRefGoogle Scholar
  7. 7.
    G.A. Mansoori, P.L.B. de Araujo, E.S. de Araujo (Editors), Diamondoid Molecules: With Applications in Biomedicine, Materials Science, Nanotechnology & Petroleum Science (World Scientific Pub. Co., 2012)Google Scholar
  8. 8.
    G.C. McIntosh, M. Yoon, S. Berber, D. Tománek, Phys. Rev. B 70, 045401 (2004)CrossRefADSGoogle Scholar
  9. 9.
    A.A. Spasov, T.V. Khamidova, L.I. Bugaeva, I. Morozov, Pharm. Chem. J. 34, 1 (2000)CrossRefGoogle Scholar
  10. 10.
    H. Huang, E. Pierstorff, E. Osawa, D. Ho, Nano. Lett. 7, 3305 (2007)CrossRefADSGoogle Scholar
  11. 11.
    A.L. Stouffer et al., Nature 451, 596 (2008)CrossRefADSGoogle Scholar
  12. 12.
    L. Wanka, K. Iqbal, P.R. Schreiner, Chem. Rev. 113, 3516 (2013)CrossRefGoogle Scholar
  13. 13.
    J.R. Schnell, J.J. Chou, Nature 451, 591 (2008)CrossRefADSGoogle Scholar
  14. 14.
    W.J. Geldenhuys, S.F. Malan, J.R. Bloomquist, A.P. Marchand, C.J.V. der Schyf, Med. Res. Rev. 25, 21 (2005)CrossRefGoogle Scholar
  15. 15.
    Y. Xue, G.A. Mansoori, Int. J. Nanosci. 7, 63 (2008)CrossRefGoogle Scholar
  16. 16.
    N.D. Drummond, A.J. Williamson, R.J. Needs, G. Galli, Phys. Rev. Lett. 95, 096801 (2008)CrossRefADSGoogle Scholar
  17. 17.
    S. Roth et al., Chem. Phys. Lett. 495, 102 (2010)CrossRefADSGoogle Scholar
  18. 18.
    L. Landt, K. Klünder, J.E. Dahl, R.M.K. Carlson, T. Möller, C. Bostedt, Phys. Rev. Lett. 103, 047702 (2009)CrossRefADSGoogle Scholar
  19. 19.
    A.A. Fokin et al., Org. Lett. 11, 3068 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Vörös, T. Demjén, T. Scilvási, A. Gali, Phys. Rev. Lett. 108, 267401 (2012)CrossRefADSGoogle Scholar
  21. 21.
    A.A. Fokin, P.R. Schreiner, Mol. Phys. 107, 823 (2009)CrossRefADSGoogle Scholar
  22. 22.
    T. Rander et al., J. Chem. Phys. 138, 024310 (2013)CrossRefADSGoogle Scholar
  23. 23.
    L. Landt et al., J. Chem. Phys. 132, 144305 (2010)CrossRefADSGoogle Scholar
  24. 24.
    L. Landt et al., J. Chem. Phys. 132, 024710 (2010)CrossRefADSGoogle Scholar
  25. 25.
    Y. Xue, G.A. Mansoori, Int. J. Mol. Sci. 11, 288 (2010)CrossRefGoogle Scholar
  26. 26.
    Y. Wang, B.A. Tkatchenko, P.R. Schreiner, A. Marx, Org. Biomol. Chem. 9, 7482 (2011)CrossRefGoogle Scholar
  27. 27.
    J.B. Crumpton, W.L. Santos, Chem. Commun. 48, 2018 (2012)CrossRefGoogle Scholar
  28. 28.
    H. Ramezani, M.R. Saberi, G.A. Mansoori, Int. J. Nanosci. Nanotechnol 3, 21 (2007)Google Scholar
  29. 29.
    G. Sivaraman, M. Fyta, Nanoscale 6, 4225 (2014)CrossRefADSGoogle Scholar
  30. 30.
    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)ADSGoogle Scholar
  31. 31.
    K. Lee, E.D. Murray, L. Kong, B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 82, 081101(R) (2010)CrossRefADSGoogle Scholar
  32. 32.
    J. Klimeš, A. Michaelides, J. Chem. Phys. 137, 120901 (2012)CrossRefADSGoogle Scholar
  33. 33.
    J. Junquera, O. Paz, D. Sánchez-Portal, E. Artacho, Phys. Rev. B 64, 235111 (2001)CrossRefADSGoogle Scholar
  34. 34.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)CrossRefADSGoogle Scholar
  35. 35.
    J. Sponer, P. Jurečka, P. Hobza, J. Am. Chem. Soc. 126, 10142 (2004)CrossRefGoogle Scholar
  36. 36.
    S.F. Boys, F. Bernardi, Mol. Phys. 19, 553 (1970)CrossRefADSGoogle Scholar
  37. 37.
    G.A. Jeffrey, An Introduction to Hydrogen Bonding, in Topics in Physical Chemistry (Oxford University Press, 1997)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute for Computational PhysicsUniversität StuttgartStuttgartGermany

Personalised recommendations