Advertisement

The influence of nanoparticle migration on forced convective heat transfer of nanofluid under heating and cooling regimes

  • Sofya V. KozlovaEmail author
  • Ilya I. Ryzhkov
Regular Article
Part of the following topical collections:
  1. Thermal non-equilibrium phenomena in multi-component fluids

Abstract

In this paper, laminar convective heat transfer of water-alumina nanofluid in a circular tube with uniform heat flux at the tube wall is investigated. The investigation is performed numerically on the basis of two-component model, which takes into account nanoparticle transport by diffusion and thermophoresis. Two thermal regimes at the tube wall, heating and cooling, are considered and the influence of nanoparticle migration on the heat transfer is analyzed comparatively. The intensity of thermophoresis is characterized by a new empirical model for thermophoretic mobility. It is shown that the nanoparticle volume fraction decreases (increases) in the boundary layer near the wall under heating (cooling) due to thermophoresis. The corresponding variations of nanofluid properties and flow characteristics are presented and discussed. The intensity of heat transfer for the model with thermophoresis in comparison to the model without thermophoresis is studied by plotting the dependence of the heat transfer coefficient on the Peclet number. The effectiveness of water-alumina nanofluid is analyzed by plotting the average heat transfer coefficient against the required pumping power. The analysis of the results reveals that the water-alumina nanofluid shows better performance in the heating regime than in the cooling regime due to thermophoretic effect.

Graphical abstract

Keywords

Topical contribution 

References

  1. 1.
    S.K. Das, S.U.S. Choi, W. Yu, T. Pradeep, Nanofluids: science and technology (Wiley-Interscience Hoboken, 2008).Google Scholar
  2. 2.
    W. Yu, D.M. France, E.V. Timofeeva, D. Singh, J.L. Routbort, Appl. Phys. Lett. 96, 213109 (2010).CrossRefADSGoogle Scholar
  3. 3.
    S.U.S. Choi, J. Heat Transfer 131, 033106 (2009).CrossRefGoogle Scholar
  4. 4.
    X.Q. Wang, A.S. Mujumdar, Int. J. Thermal Sci. 46, 1 (2007).CrossRefzbMATHGoogle Scholar
  5. 5.
    J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Keblinsky, Annu. Rev. Mater. Res. 34, 219 (2004).CrossRefADSGoogle Scholar
  6. 6.
    M. Chandrasekar, S. Suresh, Heat Transfer Engin. 30, 1136 (2009).CrossRefADSGoogle Scholar
  7. 7.
    V.I. Terekhov, S.V. Kalinina, V.V. Lemanov, Thermophys. Aeromech. 17, 1 (2010).CrossRefADSGoogle Scholar
  8. 8.
    J. Buongiorno, ASME J. Heat Transfer 128, 240 (2006).CrossRefGoogle Scholar
  9. 9.
    W.H. Yu, D.M. France, J.L. Routbort, S.U.S. Choi, Heat Transfer Engin. 29, 432 (2008).CrossRefADSGoogle Scholar
  10. 10.
    V.I. Terekhov, S.V. Kalinina, V.V. Lemanov, Thermophy. Aeromech. 17, 157 (2010).CrossRefADSGoogle Scholar
  11. 11.
    Y. Ding, H. Alias, D. Wen, R. Williams, Int. J. Heat Mass Transfer 49, 240 (2006).CrossRefGoogle Scholar
  12. 12.
    U. Rea, T. McKrell, L. Hu, J. Buongiorno, Int. J. Heat Mass Transfer 52, 2042 (2009).CrossRefGoogle Scholar
  13. 13.
    W. Williams, J. Buongiorno, L.W. Hu, J. Heat Transfer 130, 042412 (2008).CrossRefGoogle Scholar
  14. 14.
    A.T. Utomo, E.B. Haghighi, A.I.T. Zavareh, M. Ghanbarpourgeravi, H. Poth, R. Khodabandeh, B. Palm, A.W. Pacek, Int. J. Heat Mass Transfer 69, 77 (2014).CrossRefGoogle Scholar
  15. 15.
    A.V. Minakov, A.S. Lobasov, M.I. Pryazhnikov, D.V. Guzei, Defect Diffusion Forum 348, 123 (2014).CrossRefGoogle Scholar
  16. 16.
    D. V. Guzei, A. V. Minakov, V. Ya. Rudyak, A. A. Dekterev, Tech. Phys. Lett. 40, 203 (2014).CrossRefADSGoogle Scholar
  17. 17.
    D. Wen, Y. Ding, Int. J. Heat Mass Transfer 47, 5181 (2004).CrossRefGoogle Scholar
  18. 18.
    K.S. Hwang, S.P. Jang, S.U.S. Choi, Int. J. Heat Mass Transfer 52, 193 (2009).CrossRefzbMATHGoogle Scholar
  19. 19.
    Y. Xuan, Q. Li, ASME J. Heat Transfer 125, 151 (2003).CrossRefGoogle Scholar
  20. 20.
    V. Bianco, O. Manca, S. Nardini, Adv. Mech. Engin. 2010, 976254 (2010).CrossRefGoogle Scholar
  21. 21.
    D. Wen, Y. Ding, Microfluid Nanofluid 1, 183 (2005).CrossRefGoogle Scholar
  22. 22.
    D. Wen, L. Zhang, Y. He, Heat Mass Transfer 45, 1061 (2009).CrossRefADSGoogle Scholar
  23. 23.
    C.H. Sohn, K.D. Kihm, J. Korean Phys. Soc. 55, 2200 (2009).CrossRefADSGoogle Scholar
  24. 24.
    Y.S. Na, K.D. Kihm, J.S. Lee, Appl. Phys. Lett. 101, 083111 (2012).CrossRefADSGoogle Scholar
  25. 25.
    Y.S. Na, K.D. Kihm, J.S. Lee, Int. J. Heat Mass Transfer 55, 7933 (2012).CrossRefGoogle Scholar
  26. 26.
    M. Bahiraei, S.M. Hosseinalipour, Thermochim. Acta 574, 47 (2013).CrossRefGoogle Scholar
  27. 27.
    M.M. Heyhat, F. Kowsary, ASME J. Heat Transfer 132, 062401 (2010).CrossRefGoogle Scholar
  28. 28.
    I.I. Ryzhkov, Int. J. Heat Mass Transfer 66, 461 (2013).CrossRefGoogle Scholar
  29. 29.
    P.S. Epstein, Z. Physik. 54, 537 (1929).CrossRefADSGoogle Scholar
  30. 30.
    G.S. McNab, A. Meisen, J. Colloid Interface Sci. 44, 339 (1973).CrossRefGoogle Scholar
  31. 31.
    R. Piazza, A. Parola, J. Phys. Condens. Matter 20, 153102 (2008).CrossRefADSGoogle Scholar
  32. 32.
    A. Würger, Rep. Prog. Phys. 73, 126601 (2010).CrossRefADSGoogle Scholar
  33. 33.
    G. Galliero, J. Chem. Phys. 128, 064505 (2008).CrossRefADSGoogle Scholar
  34. 34.
    I.I. Ryzhkov, A.V. Minakov, Int. J. Heat Mass Transfer 77, 956 (2014).CrossRefGoogle Scholar
  35. 35.
    NIST Chemistry Webbook (2011). .Google Scholar
  36. 36.
    R. Morrell, Handbook of properties of technical and egineering ceramics, Part 2. Data reviews. Section 1. High-alumina ceramics (London, 1987).Google Scholar
  37. 37.
    W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to Ceramics, 2nd edition (John Wiley & Sons, New York, 1976).Google Scholar
  38. 38.
    A. Einstein, Ann. Phys. 19, 289 (1906).CrossRefzbMATHGoogle Scholar
  39. 39.
    S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E. 19, 59 (2006).CrossRefGoogle Scholar
  40. 40.
    M. Braibanti, D. Viglio, R. Piazza, Phys. Rev. Lett. 100, 108303 (2008).CrossRefADSGoogle Scholar
  41. 41.
    J.C. Giddings, P.M. Shinudu, S.N. Semenov, J. Colloid Interface Sci. 176, 454 (1995).CrossRefGoogle Scholar
  42. 42.
    J. Lenglet, A. Bourdon, J.C. Bacri, G. Demouchy, Phys. Rev. E. 65, 031408 (2002).CrossRefADSGoogle Scholar
  43. 43.
    S. Alves, F.L.S. Cuppo, A. Bourdon, A.M.F. Neto, J. Opt. Soc. Am. B. 23, 2328 (2006).CrossRefADSGoogle Scholar
  44. 44.
    J.H. Lienhard, J.H. Lienhard IV, A heat transfer textbook (Dover publications, New York, 2011).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute of Computational Modelling SB RASKrasnoyarskRussia

Personalised recommendations