Advertisement

Non-equilibrium fluctuations induced by the Soret effect in a ternary mixture

  • José M. Ortiz de ZárateEmail author
  • Cédric Giraudet
  • Henri Bataller
  • Fabrizio Croccolo
Regular Article
Part of the following topical collections:
  1. Thermal non-equilibrium phenomena in multi-component fluids

Abstract

We present, based on fluctuating hydrodynamics, the theory of concentration fluctuations in a ternary mixture subjected to a stationary temperature gradient, so that composition gradients are present due to thermal diffusion (Soret effect). We neglect gravity and confinement (boundary conditions) but consider a completely generic diffusion matrix, including cross-diffusion effects. We find, as in the case of binary mixtures, an important non-equilibrium enhancement of the concentration fluctuations, which is proportional to the square of the gradient and inversely proportional to the fourth power of the fluctuations wave number, q−4. The results of this paper are expected to be asymptotically correct for fluctuations of large q, while for shorter q gravity and confinement effects need to be incorporated. Comparison with previous work in the topic is included.

Graphical abstract

Keywords

Topical Issue: Thermal non-equilibrium phenomena in multi-component fluids 

References

  1. 1.
    S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962) Dover edition, 1984.Google Scholar
  2. 2.
    R. Taylor, R. Krishna, Multicomponent Mass Transfer (Wiley, New York, 1993).Google Scholar
  3. 3.
    Y. Demirel, Nonequilibrium Thermodynamics (Elsevier, Amsterdam, 2002).Google Scholar
  4. 4.
    F. Vázquez, M. López de Haro, J. Non-Equilib. Thermodyn. 26, 279 (2001).ADSzbMATHGoogle Scholar
  5. 5.
    J.M. Ortiz de Zárate, J.V. Sengers, Hydrodynamic Fluctuations in Fluids and Fluid Mixtures (Elsevier, Amsterdam, 2006).Google Scholar
  6. 6.
    M.M. Bou-Ali, J.K. Platten, J. Non-Equilib. Thermodyn. 30, 385 (2005).ADSGoogle Scholar
  7. 7.
    A. Leahy-Dios, M.M. Bou-Ali, J.K. Platten, A. Firoozabadi, J. Chem. Phys. 122, 234502 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    D.A. Ivanov, T. Grossmann, J. Winkelmann, Fluid Phase Equilib. 228-229, 283 (2005).CrossRefGoogle Scholar
  9. 9.
    D.A. Ivanov, J. Winkelmann, Int. J. Thermophys. 29, 1921 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    T. Grossmann, J. Winkelmann, J. Chem. Eng. Data 54, 405 (2009).CrossRefGoogle Scholar
  11. 11.
    T. Grossmann, J. Winkelmann, J. Chem. Eng. Data 54, 485 (2009).CrossRefGoogle Scholar
  12. 12.
    P. Blanco, M.M. Bou-Ali, J.K. Platten, D.A. de Mezquía, J.A. Madariaga, C. Santamaría, J. Chem. Phys. 132, 114506 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    A. Königer, H. Wunderlicht, W. Köhler, J. Chem. Phys. 132, 174506 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    V. Sechenyh, J.C. Legros, V. Shevtsova, J. Chem. Eng. Data 57, 1036 (2012).CrossRefGoogle Scholar
  15. 15.
    A. Mialdun, V. Sechenyh, J.C. Legros, J.M. Ortiz de Zárate, V. Shevtsova, J. Chem. Phys. 139, 104903 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    A. Mialdun, C. Minetti, Y. Gaponenko, V. Shevtsova, F. Dubois, Micrograv. Sci. Technol. 25, 83 (2012).CrossRefGoogle Scholar
  17. 17.
    A. Ahadi, S. van Varenbergh, M.Z. Saghir, J. Chem. Phys. 138, 204201 (2013).ADSCrossRefGoogle Scholar
  18. 18.
    J.M. Ortiz de Zárate, J.L. Hita, J.V. Sengers, C.R. Méc. 341, 399 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon, London, 1959) 2nd revised English version, 1987.Google Scholar
  20. 20.
    R.F. Fox, G.E. Uhlenbeck, Phys. Fluids 13, 1893 (1970).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    H.N.W. Lekkerkerker, W.G. Laidlaw, J. Chem. Soc., Faraday Trans. 2 70, 1088 (1974).CrossRefGoogle Scholar
  22. 22.
    J. van der Elsken, A. Bot, J. Appl. Phys. 66, 2118 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    D.A. Ivanov, J. Winkelmann, J. Chem. Phys. 125, 104507 (2006).ADSCrossRefGoogle Scholar
  24. 24.
    A. Bardow, Fluid Phase Equilib. 251, 121 (2007).CrossRefGoogle Scholar
  25. 25.
    R.D. Mountain, Rev. Mod. Phys. 38, 205 (1966).ADSCrossRefGoogle Scholar
  26. 26.
    R.D. Mountain, J.M. Deutch, J. Chem. Phys. 50, 1103 (1969).ADSCrossRefGoogle Scholar
  27. 27.
    B.J. Berne, R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976) Dover edition, 2000. .Google Scholar
  28. 28.
    J.P. Boon, S. Yip, Molecular Hydrodynamics (McGraw-Hill, New York, 1980) Dover edition, 1991.Google Scholar
  29. 29.
    J.P. Hansen, I.R. McDonald, Theory of Simple liquids, 2nd edition (Academic Press, London, 1986).Google Scholar
  30. 30.
    K. Balakrishnan, A.L. Garcia, A. Donev, J.B. Bell, Phys. Rev. E 89, 013017 (2014).ADSCrossRefGoogle Scholar
  31. 31.
    M.G. Velarde, R.S. Schechter, Phys. Fluids 15, 1707 (1972).ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    J.V. Sengers, J.M. Ortiz de Zárate, in Thermal Nonequilibrium Phenomena in Fluid Mixtures, Vol. 584 of Springer Lect. Notes Phys., edited by W. Köhler, S. Wiegand (Springer, Berlin, 2002) pp. 121--145.Google Scholar
  33. 33.
    J.M. Ortiz de Zárate, J.A. Fornés, J.V. Sengers, Phys. Rev. E 74, 046305 (2006).ADSCrossRefGoogle Scholar
  34. 34.
    A.M.S. Tremblay, M. Arai, E.D. Siggia, Phys. Rev. A 23, 1451 (1981).ADSCrossRefGoogle Scholar
  35. 35.
    A.L. Garcia, M. Malek Mansour, G.C. Lie, E. Clementi, J. Stat. Phys. 47, 209 (1987).ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    I. Pagonabarraga, J.M. Rubí, Phys. Rev. E 49, 267 (1987).ADSCrossRefGoogle Scholar
  37. 37.
    H.P. Breuer, F. Petruccione, Phys. Lett. A 185, 385 (1994).ADSCrossRefGoogle Scholar
  38. 38.
    J.M. Ortiz de Zárate, J.V. Sengers, J. Stat. Phys. 115, 1341 (2004).ADSCrossRefzbMATHGoogle Scholar
  39. 39.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Phys. Rev. E 76, 041112 (2007).ADSCrossRefGoogle Scholar
  40. 40.
    P.N. Segrè, J.V. Sengers, Physica A 198, 46 (1993).ADSCrossRefGoogle Scholar
  41. 41.
    A. Vailati, M. Giglio, Nature 390, 262 (1997).ADSCrossRefGoogle Scholar
  42. 42.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Appl. Opt. 45, 2166 (2006).ADSCrossRefGoogle Scholar
  43. 43.
    F. Croccolo, D. Brogioli, A. Vailati, M. Giglio, D.S. Cannell, Ann. N.Y. Acad. Sci. 1077, 365 (2006).ADSCrossRefGoogle Scholar
  44. 44.
    F. Croccolo, H. Bataller, F. Scheffold, J. Chem. Phys. 137, 234202 (2012).ADSCrossRefGoogle Scholar
  45. 45.
    F. Croccolo, F. Scheffold, H. Bataller, C.R. Méc. 341, 378 (2013).ADSCrossRefGoogle Scholar
  46. 46.
    A. Vailati, R. Cerbino, S. Mazzoni, C.J. Takacs, D.S. Cannell, M. Giglio, Nat. Commun. 2, 290 (2011).ADSCrossRefGoogle Scholar
  47. 47.
    C.J. Takacs, A. Vailati, R. Cerbino, S. Mazzoni, M. Giglio, D.S. Cannell, Phys. Rev. Lett. 106, 244502 (2011).ADSCrossRefGoogle Scholar
  48. 48.
    T.R. Kirkpatrick, E.G.D. Cohen, J.R. Dorfman, Phys. Rev. A 26, 995 (1982).ADSCrossRefGoogle Scholar
  49. 49.
    D. Ronis, I. Procaccia, Phys. Rev. A 26, 1812 (1982).ADSCrossRefGoogle Scholar
  50. 50.
    B.M. Law, J.C. Nieuwoudt, Phys. Rev. A 40, 3880 (1989).ADSCrossRefGoogle Scholar
  51. 51.
    W.B. Li, K.J. Zhang, J.V. Sengers, R.W. Gammon, J.M. Ortiz de Zárate, Phys. Rev. Lett. 81, 5580 (1998).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • José M. Ortiz de Zárate
    • 1
    Email author
  • Cédric Giraudet
    • 2
  • Henri Bataller
    • 2
  • Fabrizio Croccolo
    • 2
  1. 1.Departamento de Física Aplicada IUniversidad ComplutenseMadridSpain
  2. 2.Laboratoire des Fluides Complexes et leurs Réservoirs - UMR5150Université de Pau et des Pays de l’AdourAngletFrance

Personalised recommendations