Advertisement

Flow patterns in inclined-layer turbulent convection

  • 170 Accesses

  • 1 Citations

Abstract

We study the flow patterns of turbulent convection in an inclined layer with a large aspect ratio Γ and moderately high Rayleigh numbers ranging from 9 × 104 to 2 × 107 based on three-dimensional numerical simulations. The Prandtl number is fixed at σ = 0.7 and the angles of inclination are varied between 5° ≤ θ ≤ 60°. The initial quiescent fluid layer is observed to firstly evolve into a quasi-periodical flow pattern before the turbulent convection is fully developed. The transient flow at earlier times, though elongated along the slope and anisotropic in the directions parallel to the top and bottom plates, becomes isotropic in the final statistically steady state, provided that the Rayleigh number is high (R ≃ 2 × 107) and the angle of inclination is small (θ ≤ 17°). The effect of inclination on the large-scale flow is different from that on individual plumes, which exhibits isotropy and is independent of the angles of inclination for Rayleigh numbers above 5 × 106. The regions near the upper and lower sidewalls of the enclosure, considered as extensions of the thermal boundary layer, shrink with increasing Rayleigh numbers and the scaling exponent is about 2/7.

Graphical abstract

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    G. Ahlers, Physics 2, 74 (2009).

  2. 2.

    L.P. Kadanoff, Phys. Today 54, 34 (2001).

  3. 3.

    G. Ahlers, S. Grossmann, D. Lohse, Rev. Mod. Phys. 81, 503 (2009).

  4. 4.

    F. Chillà, J. Schumacher, Eur. Phys. J. E 35, 58 (2012).

  5. 5.

    A. Parodi, J. von Hardenberg, G. Passoni, A. Provenzale, E.A. Spiegel, Phys. Rev. Lett. 92, 194503 (2004).

  6. 6.

    D. Lohse, K.Q. Xia, Annu. Rev. Fluid Mech. 42, 335 (2010).

  7. 7.

    J.J. Niemela, L. Skrbek, K.R. Sreenivasan, R.J. Donnelly, Nature 404, 837 (2000).

  8. 8.

    X.L. Qiu, K.Q. Xia, P. Tong, J. Turbulence 6, 30 (2005).

  9. 9.

    J.C. Tisserand, M. Creyssels, Y. Gasteuil, H. Pabiou, M. Gibert, B. Castaing, F. Chilla, Phys. Fluids 23, 015105 (2011).

  10. 10.

    A. Namiki, K. Kurita, Phys. Rev. E 65, 056301 (2002).

  11. 11.

    K.E. Daniels, B.B. Plapp, E. Bodenschatz, Phys. Rev. Lett. 84, 5320 (2000).

  12. 12.

    E. Bodenschatz, W. Pesch, G. Ahlers, Annu. Rev. Fluid Mech. 32, 709 (2000).

  13. 13.

    Y.M. Chen, A.J. Pearlstein, J. Fluid Mech. 198, 513 (1989).

  14. 14.

    J.E. Hart, J. Fluid Mech. 47, 547 (1971).

  15. 15.

    R.M. Clever, F.H. Busse, J. Fluid Mech. 81, 107 (1977).

  16. 16.

    R. Delgado-Buscalioni, Phys. Rev. E 64, 016303 (2001).

  17. 17.

    F.H. Busse, R.M. Clever, Phys. Fluids 12, 2137 (2000).

  18. 18.

    K.E. Daniels, E. Bodenschatz, Phys. Rev. Lett. 88, 034501 (2002).

  19. 19.

    K.E. Daniels, O. Brausch, W. Pesch, E. Bodenschatz, J. Fluid Mech. 597, 261 (2008).

  20. 20.

    R. Krishnamurti, L.N. Howard, Proc. Natl. Acad. Sci. U.S.A. 78, 1981 (1981).

  21. 21.

    T. Hartlep, A. Tilgner, F.H. Busse, Phys. Rev. Lett. 91, 064501 (2003).

  22. 22.

    T. Hartlep, A. Tilgner, F.H. Busse, J. Fluid Mech. 544, 309 (2005).

  23. 23.

    B. Castaing, G. Gunaratne, L. Kadanoff, A. Libchaber, F. Heslot, J. Fluid. Mech. 204, 1 (1989).

  24. 24.

    J. Zhang, S. Childress, A. Libchaber, Phys. Fluids 9, 1034 (1997).

  25. 25.

    J. Niemela, L. Skrbek, K. Sreenivasan, R. Donnelly, J. Fluid Mech. 449, 169 (2001).

  26. 26.

    X.L. Qiu, P. Tong, Phys. Rev. E 64, 036304 (2001).

  27. 27.

    J. Niemela, K. Sreenivasan, Europhys. Lett. 62, 829 (2003).

  28. 28.

    H.D. Xi, S. Lam, K.Q. Xia, J. Fluid Mech. 503, 47 (2004).

  29. 29.

    J. von Hardenberg, A. Parodi, G. Passoni, A. Provenzale, E.A. Spiegel, Phys. Lett. A 372, 2223 (2008).

  30. 30.

    S. Ciliberto, S. Cioni, C. Laroche, Phys. Rev. E 54, R5901 (1996).

  31. 31.

    F. Chilla, M. Rastello, S. Chaumat, B. Castaing, Eur. Phys. J. B 40, 223 (2004).

  32. 32.

    P. Wei, K.Q. Xia, J. Fluid. Mech. 720, 140 (2013).

  33. 33.

    S. Weiss, G. Ahlers, J. Fluid Mech. 715, 314 (2013).

  34. 34.

    P.E. Roche, B. Castaing, B. Chabaud, B. Hébral, Phys. Rev. E 63, 045303 (2001).

  35. 35.

    K.E. Daniels, C. Beck, E. Bodenschatz, Physica D 193, 208 (2004).

  36. 36.

    P.L. Bhatnagar, E.P. Gross, M. Krook, Phys. Rev. 94, 511 (1954).

  37. 37.

    Y.H. Qian, D. D’Humières, P. Lallemand, Europhys. Lett. 17, 479 (1992).

  38. 38.

    X. Shan, Phys. Rev. E 55, 2780 (1997).

  39. 39.

    X. He, L.S. Luo, M. Dembo, J. Comput. Phys. 129, 357 (1996).

  40. 40.

    Z. Guo, C. Zheng, B. Shi, Chin. Phys. 11, 366 (2002).

  41. 41.

    G. Grötzbach, J. Comput. Phys. 49, 241 (1983).

  42. 42.

    X. Chavanne, F. Chilla, B. Chabaud, B. Castaing, B. Hebral, Phys. Fluids 13, 1300 (2001).

  43. 43.

    X.Z. Wu, A. Libchaber, Phys. Rev. A 45, 842 (1992).

  44. 44.

    F. Heslot, B. Castaing, A. Libchaber, Phys. Rev. A 36, 5870 (1987).

  45. 45.

    D.C. Threlfall, J. Fluid. Mech. 67, 17 (1975).

  46. 46.

    O. Shishkina, R.J.A.M. Stevens, S. Grossmann, D. Lohse, New J. Phys. 12, 075022 (2010).

  47. 47.

    O. Shishkina, S. Horn, S. Wagner, J. Fluid. Mech. 730, 442 (2013).

  48. 48.

    R.M. Kerr, J. Fluid Mech. 310, 139 (1996).

  49. 49.

    O. Shishkina, C. Wagner, J. Fluid. Mech. 599, 383 (2008).

  50. 50.

    R.J.A.M. Stevens, R. Verzicco, D. Lohse, J. Fluid Mech. 643, 495 (2010).

  51. 51.

    M.S. Emran, J. Schumacher, Eur. Phys. J. E. 35, 108 (2012).

  52. 52.

    R. Verzicco, R. Camussi, J. Fluid Mech. 477, 19 (2003).

  53. 53.

    R.P.J. Kunnen, H.J.H. Clercx, B.J. Geurts, L.J.A. van Bokhoven, R.A.D. Akkermans, R. Verzicco, Phys. Rev. E 77, 016302 (2008).

  54. 54.

    S.B. Pope, Turbulent Flows (Cambridge University Press, 2000).

  55. 55.

    A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, Vol. 2 (MIT Press, 1975).

  56. 56.

    J.N. Shadid, R.J. Goldstein, J. Fluid Mech. 215, 61 (1990).

  57. 57.

    K.E. Daniels, R.J. Wiener, E. Bodenschatz, Phys. Rev. Lett. 91, 114501 (2003).

  58. 58.

    K.E. Daniels, E. Bodenschatz, Chaos 13, 55 (2003).

  59. 59.

    F.H. Busse, J. Fluid Mech. 52, 97 (1972).

  60. 60.

    E. Moses, G. Zocchi, A. Libchaberii, J. Fluid Mech. 251, 581 (1993).

  61. 61.

    E. Kaminski, C. Jaupart, J. Fluid Mech. 478, 287 (2003).

  62. 62.

    X.D. Shang, X.L. Qiu, P. Tong, K.Q. Xia, Phys. Rev. Lett. 90, 074501 (2003).

  63. 63.

    Q. Zhou, K.Q. Xia, New J. Phys. 12, 075006 (2010).

  64. 64.

    M. Emran, J. Schumacher, J. Fluid Mech. 611, 13 (2008).

  65. 65.

    M. Kaczorowski, C. Wagner, J. Fluid Mech. 618, 89 (2009).

  66. 66.

    R.M. Kerr, J.R. Herring, J. Fluid Mech. 419, 325 (2000).

  67. 67.

    K. Julien, S. Legg, J. McWilliams, J. Werne, J. Fluid Mech. 391, 151 (1999).

  68. 68.

    S.Q. Zhou, K.Q. Xia, Phys. Rev. Lett. 89, 184502 (2002).

  69. 69.

    E.S.C. Ching, H. Guo, X.D. Shang, P. Tong, K.Q. Xia, Phys. Rev. Lett. 93, 124501 (2004).

  70. 70.

    A. Belmonte, A. Libchaber, Phys. Rev. E 53, 4893 (1996).

  71. 71.

    E.M. Sevick, P.A. Monson, J.M. Ottino, J. Chem. Phys. 88, 1198 (1988).

  72. 72.

    A. Tilgner, A. Belmonte, A. Libchaber, Phys. Rev. E 47, R2253 (1993).

  73. 73.

    A. Belmonte, A. Tilgner, A. Libchaber, Phys. Rev. E 51, 5681 (1995).

Download references

Author information

Correspondence to Wei Qiang.

Electronic supplementary material

Supplementary material, approximately 29.3 MB.

Supplementary material, approximately 29.3 MB.

Supplementary material, approximately 29.3 MB.

Supplementary material, approximately 29.3 MB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Qiang, W., Cao, H. Flow patterns in inclined-layer turbulent convection. Eur. Phys. J. E 37, 64 (2014). https://doi.org/10.1140/epje/i2014-14064-7

Download citation

Keywords

  • Flowing Matter: Liquids and Complex Fluids