Advertisement

Experimental analysis of intermittency in electrohydrodynamic instability

  • Francesco Carbone
  • Luca Sorriso-ValvoEmail author
Regular Article

Abstract

The properties of turbulent electroconvective fluctuations generated in a nematic liquid crystal under the action of an external oscillating electric field are investigated. In particular, the spectral properties and the scaling behaviour of probability density functions (PDFs) of light intensity fluctuations are considered at different voltages. At intermediate voltage, in the weak turbulent regime, PDFs are Gaussian at large scales and show increasingly enhanced wings at smaller scales, recalling the typical signature of intermittency in isotropic fluid flows. When the voltage is increased, dynamical scattering regimes appear, characterized by increasing complexity. In order to get a quantitative estimate of intermittency, PDFs are modeled through the Castaing distribution, and structure functions are estimated in the framework of Extended Self-Similarity. Results support the generation of small-scale fluctuations through a fragmentation process of large-scale structures. The persistent anisotropic properties of the fluctuations are highlighted by the results.

Graphical abstract

Keywords

Flowing matter: Nonlinear Physics 

References

  1. 1.
    A.S. Monin, A.M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (Dover, New York, 2007).Google Scholar
  2. 2.
    W.D. McComb, The Physics of Fluid Turbulence (Oxford University Press, New York, 1990).Google Scholar
  3. 3.
    U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, UK, 1995).Google Scholar
  4. 4.
    K.R. Sreenivasan, J. Fluid Mech. 151, 81 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    K.R. Sreenivasan, R.A. Antonia, Ann. Rev. Fluid Mech. 29, 435 (1997).ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    F. Anselmet et al., J. Fluid Mech. 140, 63 (1984).ADSCrossRefGoogle Scholar
  7. 7.
    A. Arneodo et al., Europhys. Lett. 34, 411 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    A. Vincent, M. Meneguzzi, J. Fluid Mech. 225, 1 (1991).ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    O.N. Boratav, R.B. Pelz, Phys. Fluids 9, 1400 (1997).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    A.N. Kolmogorov, C. R. Acad. Sci. U.R.S.S. 36, 301 (1941).Google Scholar
  11. 11.
    R. Bruno, V. Carbone, Liv. Rev. Sol. Phys. 2, 4 (2005).Google Scholar
  12. 12.
    L. Burlaga, J. Geophys. Res. 96, 5847 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    E. Marsch, C.-Y. Tu, Nonlinear Proc. Geophys. 4, 101 (1997).ADSCrossRefGoogle Scholar
  14. 14.
    V. Carbone, Phys. Rev. Lett. 71, 1546 (1993).ADSCrossRefGoogle Scholar
  15. 15.
    H. Politano, A. Pouquet, V. Carbone, Europhys. Lett. 43, 516 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    R. Camussi et al., Phys. Fluids 8, 1181 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    A. Noullez et al., J. Fluid Mech. 339, 287 (1997).ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    B. Protas, S. Goujon-Durand, J.E. Wesfreid, Phys. Rev. E 55, 4165 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    E. Gaudin et al., Phys. Rev. E 57, R9 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    L. Biferale, I. Procaccia, Phys. Rep. 414, 43 (2005).ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    P.G. De Gennes, The Physics of Liquid Crystals (Oxford Science Pub., Oxford, UK, 1993).Google Scholar
  22. 22.
    L.M. Blinov, Electro-Optical and Magneto-Optical properties of Liquid Crystals (Wiley, New York, 1983).Google Scholar
  23. 23.
    A. Joets, R. Ribotta, J. Phys. (Paris) 47, 595 (1986).CrossRefGoogle Scholar
  24. 24.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    S. Kai et al., J. Phys. Soc. Jpn. 38, 1789 (1975).ADSCrossRefGoogle Scholar
  26. 26.
    F. Carbone et al., Europhys. Lett. 89, 46004 (2010).ADSCrossRefGoogle Scholar
  27. 27.
    F. Carbone, A. Vecchio, L. Sorriso-Valvo, Eur. Phys. J. E 34, 75 (2011).CrossRefGoogle Scholar
  28. 28.
    F. Carbone et al., Phys. Rev. Lett. 106, 114502 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    Z.A. Daya, V.B. Deyirmenjian, S.W. Morris, J.R. de Bruyn, Phys. Rev. Lett. 80, 964 (1998).ADSCrossRefGoogle Scholar
  30. 30.
    Z.A. Daya, V.B. Deyirmenjian, S.W. Morris, Phys. Fluids 11, 3613 (1999).ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    V.B. Deyirmenjian, Z.A. Daya, S.W. Morris, Phys. Rev. E 72, 036211 (2005).ADSCrossRefGoogle Scholar
  32. 32.
    G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, R. Bartolino, Opt. Express 14, 7737 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    S. Ferjani, L. Sorriso-Valvo, A. De Luca, V. Barna, R. De Marco, G. Strangi, Phys. Rev. E 78, 011707 (2008).ADSCrossRefGoogle Scholar
  34. 34.
    S.V. Shiyanovskii, I.I. Smalyukh, O.D. Lavrentovich, Computer Simulations and Fluorescence Confocal Polarizing Microscopy of Structures in Cholesteric Liquid Crystals (Kluwer Academic Publishers, The Netherlands, 2001).Google Scholar
  35. 35.
    I.I. Smalyukh, R. Pratiba, N.V. Madhustudana, O.D. Lavrentovich, Eur. Phys. J. E 16, 179 (2005).CrossRefGoogle Scholar
  36. 36.
    B. Zappone et al., Soft Matter 8, 4318 (2012).ADSCrossRefGoogle Scholar
  37. 37.
    J.L. Ericksen, Arch. Ration. Mech. Anal. 4, 231 (1959).CrossRefMathSciNetGoogle Scholar
  38. 38.
    F.M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).CrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    O. Parodi, J. Phys. (Paris) 31, 581 (1970).CrossRefGoogle Scholar
  40. 40.
    L. Te-Sheng et al., Phys. Fluids 25, 082102 (2013).ADSCrossRefGoogle Scholar
  41. 41.
    S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, 1982).Google Scholar
  42. 42.
    V. Carbone, C. Versace, N. Scaramuzza, Physica D 106, 314 (1997).ADSCrossRefGoogle Scholar
  43. 43.
    K.A. Takeuchi, M. Kuroda, H. Chatè, M. Sano, Phys. Rev. Lett. 99, 234503 (2007).ADSCrossRefGoogle Scholar
  44. 44.
    B. Castaing, Y. Gagne, V. Hopfinger, Physica D 46, 177 (1990).ADSCrossRefzbMATHGoogle Scholar
  45. 45.
    E. Marsch, C.-Y. Tu, Ann. Geophys. 12, 1127 (1994).ADSCrossRefGoogle Scholar
  46. 46.
    L. Sorriso-Valvo et al., Geophys. Res. Lett. 26, 1804 (1999).ADSCrossRefGoogle Scholar
  47. 47.
    L. Sorriso-Valvo et al., Europhys. Lett. 51, 520 (2000).ADSCrossRefGoogle Scholar
  48. 48.
    L. Sorriso-Valvo et al., Plan. Space Sci. 49, 1193 (2001).ADSCrossRefGoogle Scholar
  49. 49.
    L. Sorriso-Valvo, V. Carbone, R. Bruno, Europhys. Lett. 67, 504 (2004).ADSCrossRefGoogle Scholar
  50. 50.
    V. Carbone et al., Riv. Nuovo Cimento 27, N. 8-9 (2004).Google Scholar
  51. 51.
    A.N. Kolmogorov, J. Fluid Mech. 13, 82 (1962).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  52. 52.
    R. Benzi et al., Phys. Rev. E 48, 29 (1993).ADSCrossRefGoogle Scholar
  53. 53.
    R. Benzi et al., Physica D 96, 162 (1996).ADSCrossRefGoogle Scholar
  54. 54.
    G. Ruiz-Chavarria, C. Baudet, S. Ciliberto, Physica D 99, 369 (1996).ADSCrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CNR-IPCF - U.O.S. CosenzaRende (CS)Italy
  2. 2.Space Sciences LaboratoryUniversity of CaliforniaBerkeleyUSA

Personalised recommendations