Rotational propulsion enabled by inertia

  • François Nadal
  • On Shun Pak
  • LaiLai Zhu
  • Luca Brandt
  • Eric Lauga
Regular Article

Abstract

The fluid mechanics of small-scale locomotion has recently attracted considerable attention, due to its importance in cell motility and the design of artificial micro-swimmers for biomedical applications. Most studies on the topic consider the ideal limit of zero Reynolds number. In this paper, we investigate a simple propulsion mechanism --an up-down asymmetric dumbbell rotating about its axis of symmetry-- unable to propel in the absence of inertia in a Newtonian fluid. Inertial forces lead to continuous propulsion for all finite values of the Reynolds number. We study computationally its propulsive characteristics as well as analytically in the small-Reynolds-number limit. We also derive the optimal dumbbell geometry. The direction of propulsion enabled by inertia is opposite to that induced by viscoelasticity.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005).CrossRefADSGoogle Scholar
  2. 2.
    H.A. Stone, A.D. Stroock, A. Ajdari, Annu. Rev. Fluid Mech. 36, 381 (2004).CrossRefADSGoogle Scholar
  3. 3.
    A.D. Stroock, S.K.W. Dertinger, A. Ajdari, H.A. Stone, Science 25, 647 (2002).CrossRefADSGoogle Scholar
  4. 4.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977).CrossRefADSGoogle Scholar
  5. 5.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010).CrossRefADSGoogle Scholar
  7. 7.
    B.J. Nelson, I.K. Kaliakatsos, J.J. Abbott, Annu. Rev. Biomed. Eng. 12, 55 (2010).CrossRefGoogle Scholar
  8. 8.
    J. Wang, W. Gao, ACS-NANO 6, 5745 (2012).CrossRefGoogle Scholar
  9. 9.
    E. Lauga, Soft Matter 7, 3060 (2009).CrossRefADSGoogle Scholar
  10. 10.
    S. Childress, R. Dudley, J. Fluid Mech. 498, 257 (2004).CrossRefMATHMathSciNetADSGoogle Scholar
  11. 11.
    N. Vandenberghe, J. Zhang, S. Childress, J. Fluid Mech. 506, 147 (2004).CrossRefMATHADSGoogle Scholar
  12. 12.
    S. Alben, M. Shelley, Proc. Natl. Acad. Sci. U.S.A. 102, 11163 (2005).CrossRefADSGoogle Scholar
  13. 13.
    N. Vandenberghe, S. Childress, J. Zhang, Phys. Fluids 18, 014102 (2006).CrossRefMathSciNetADSGoogle Scholar
  14. 14.
    X.Y. Lu, Q. Liao, Phys. Fluids 18, 098104 (2006).CrossRefADSGoogle Scholar
  15. 15.
    E. Lauga, Phys. Fluids 19, 061703 (2007).CrossRefADSGoogle Scholar
  16. 16.
    D. Gonzalez-Rodriguez, E. Lauga, J. Phys.: Condens. Matter 21, 204103 (2009).ADSGoogle Scholar
  17. 17.
    S.E. Spagnolie, L. Moret, M.J. Shelley, J. Zhang, Phys. Fluids 22, 041903 (2010).CrossRefADSGoogle Scholar
  18. 18.
    G.I. Taylor, Proc. R. Soc. London, Ser. A 209, 447 (1951).CrossRefMATHADSGoogle Scholar
  19. 19.
    E.O. Tuck, J. Fluid Mech. 31, 301 (1968).CrossRefADSGoogle Scholar
  20. 20.
    C. Brennen, J. Fluid Mech. 65, 799 (1974).CrossRefMATHADSGoogle Scholar
  21. 21.
    A.S. Khair, N.G. Chisholm, Phys. Fluids 26, 011902 (2014).CrossRefADSGoogle Scholar
  22. 22.
    R.G. Cox, J. Fluid Mech. 23, 625 (1965).CrossRefADSGoogle Scholar
  23. 23.
    O.S. Pak, L. Zhu, L. Brandt, E. Lauga, Phys. Fluids 24, 103102 (2012).CrossRefADSGoogle Scholar
  24. 24.
    P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagués, Phys. Rev. Lett. 101, 218304 (2008).CrossRefADSGoogle Scholar
  25. 25.
    P. Tierno, R. Golestanian, I. Pagonabarraga, F. Sagués, J. Phys. Chem. B 112, 16525 (2008).CrossRefGoogle Scholar
  26. 26.
    P. Tierno, O. Guell, F. Sagués, R. Golestanian, I. Pagonabarraga, Phys. Rev. E 81, 011402 (2010).CrossRefADSGoogle Scholar
  27. 27.
    L. Zhu, E. Lauga, L. Brandt, Phys. Fluids 24, 051902 (2012).CrossRefADSGoogle Scholar
  28. 28.
    A.N. Whitehead, Q. J. Math. 23, 143 (1889).Google Scholar
  29. 29.
    C.W. Oseen, Arkiv Mat., Astron. och Fysik 6, 29 (1910).Google Scholar
  30. 30.
    H. Brenner, Hydrodynamic Resistance of Particles at Small Reynolds Numbers, Vol. 6 of Adv. Chem. Eng. (Academic Press, 1966) pp. 287--438.Google Scholar
  31. 31.
    W.G. Bickley, Philos. Mag. 25, 746 (1938).MATHGoogle Scholar
  32. 32.
    W.D. Collins, Mathematika 2, 42 (1955).CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    M.D.A. Cooley, M.E. O’Neill, Proc. Camb. Philos. Soc. 66, 407 (1969).CrossRefMATHADSGoogle Scholar
  34. 34.
    H. Takagi, J. Phys. Soc. Jpn. 36, 875 (1974).CrossRefADSGoogle Scholar
  35. 35.
    S. Kim, S.J. Karrila, Microhydrodynamics (Dover publication, Inc., 2005).Google Scholar
  36. 36.
    H. Brenner, R.G. Cox, J. Fluid Mech. 17, 561 (1963).CrossRefMATHMathSciNetADSGoogle Scholar
  37. 37.
    R.G. Cox, H. Brenner, Chem. Eng. Sci. 23, 147 (1968).CrossRefGoogle Scholar
  38. 38.
    B.P. Ho, L.G. Leal, J. Fluid Mech. 65, 365 (1974).CrossRefMATHADSGoogle Scholar
  39. 39.
    M. Stimson, G.B. Jeffery, Proc. R. Soc. London, Ser. A 111, 110 (1926).CrossRefMATHADSGoogle Scholar
  40. 40.
    G.B. Jeffery, Proc. London Math. Soc. 14, 327 (1915).CrossRefGoogle Scholar
  41. 41.
    R.B. Bird, C.F. Curtiss, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, Vol. 1 (Wiley-Interscience, New York, 1987).Google Scholar
  42. 42.
    F.A. Morrison, Understanding Rheology (Oxford University Press, New York, 2001). .Google Scholar
  43. 43.
    S.E. Spagnolie, E. Lauga, Phys. Rev. Lett. 106, 58103 (2011).CrossRefADSGoogle Scholar
  44. 44.
    J. Happel, H. Brenner, Low Reynolds number hydrodynamics (Martinus Nijhoff Publishers, The Hague, 1983).Google Scholar
  45. 45.
    G. von Winckle, Legendre-Gauss Quadrature Weights and Nodes, www.mathwork.com.

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • François Nadal
    • 1
  • On Shun Pak
    • 2
  • LaiLai Zhu
    • 3
    • 4
  • Luca Brandt
    • 3
  • Eric Lauga
    • 5
  1. 1.Commissariat à l’Energie AtomiqueLe BarpFrance
  2. 2.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  3. 3.Linné Flow CenterKTH MechanicsStockholmSweden
  4. 4.Laboratory of Fluid Mechanics and InstabilitiesEPFLLausanneSwitzerland
  5. 5.Department of Applied Mathematics and Theoretical PhysicsUniversity of Cambridge, Center for Mathematical SciencesCambridgeUK

Personalised recommendations