Advertisement

First-passage time of run-and-tumble particles

  • L. Angelani
  • R. Di Leonardo
  • M. Paoluzzi
Regular Article

Abstract

We solve the problem of first-passage time for run-and-tumble particles in one dimension. Exact expression is derived for the mean first-passage time in the general case, considering external force fields and chemotactic fields, giving rise to space-dependent swim speed and tumble rate. Agreement between theoretical formulae and numerical simulations is obtained in the analyzed case studies --constant and sinusoidal force fields, constant gradient chemotactic field. Reported findings can be useful to get insights into very different phenomena involving active particles, such as bacterial motion in external fields, intracellular transport, cell migration, animal foraging.

Graphical abstract

Keywords

Living systems: Cellular Processes 

References

  1. 1.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001).Google Scholar
  3. 3.
    H.A. Kramers, Physica 7, 284 (1940).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Z. Schuss, J. Sci. Comput. 53, 194 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    A. Engel, F. Moss, Phys. Rev. A 38, 571 (1988).ADSCrossRefGoogle Scholar
  6. 6.
    S. Condamin et al., Nature 450, 77 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    M. Gitterman, Phys. Rev. E 62, 6065 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    Z. Schuss, A. Singer, D. Holcman, Proc. Natl. Acad. Sci. U.S.A. 104, 16098 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    O. Bénichou, R. Voituriez, Phys. Rev. Lett. 100, 168105 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    G. Oshanin, M. Tamm, O. Vasilyev, J. Chem. Phys. 132, 235101 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    T.G. Mattos, C. Mejía-Monasterio, R. Metzler, G. Oshanin, Phys. Rev. E 86, 031143 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer, Berlin, 1989).Google Scholar
  13. 13.
    H.C. Berg, E. Coli in Motion (Springer-Verlag, New York, 2004).Google Scholar
  14. 14.
    M.E. Cates, Rep. Prog. Phys. 75, 42601 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Le Berre et al., Phys. Rev. Lett. 111, 198101 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    E.A. Codling, M.J. Plank, S.J. Benhamou, J. R. Soc. Interface 5, 813 (2008).CrossRefGoogle Scholar
  18. 18.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Special Topics 202, 1 (2012).ADSCrossRefGoogle Scholar
  19. 19.
    J. Tailleur, M. Cates, Phys. Rev. Lett. 100, 218103 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    K. Martens et al., Eur. Phys. J. E 35, 84 (2010).CrossRefGoogle Scholar
  21. 21.
    L. Angelani, EPL 102, 20004 (2013).ADSCrossRefGoogle Scholar
  22. 22.
    M.B. Wan, C.J. Olson Reichhardt, Z. Nussinov, C. Reichhardt, Phys. Rev. Lett. 101, 018102 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    C. Reichhardt, C.J. Olson Reichhardt, Phys. Rev. E 90, 012701 (2014).CrossRefGoogle Scholar
  24. 24.
    L. Angelani, R. Di Leonardo, G. Ruocco, Phys. Rev. Lett. 102, 048104 (2009).ADSCrossRefGoogle Scholar
  25. 25.
    M. Paoluzzi, R. Di Leonardo, L. Angelani, J. Phys.: Condens. Matter 25, 415102 (2013).Google Scholar
  26. 26.
    H.A. Lorentz, Arch. Néerl. 10, 336 (1905).Google Scholar
  27. 27.
    H.A. Lorentz, Collected Papers, Vol. III (Martinus Nijhoff, The Hague, 1936).Google Scholar
  28. 28.
    S. Goldstein, Q. J. Mech. Appl. Math. 4, 129 (1951).CrossRefzbMATHGoogle Scholar
  29. 29.
    M. Dogterom, S. Leibler, Phys. Rev. Lett. 70, 1347 (1993).ADSCrossRefGoogle Scholar
  30. 30.
    D.J. Bicout, Phys. Rev. E 56, 6656 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    B. Gaveau, T. Jacobson, M. Kac, L.S. Schulman, Phys. Rev. Lett. 53, 419 (1984).ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    V. Balakrishnan, S. Lakshmibala, New J. Phys. 7, 11 (2005).CrossRefGoogle Scholar
  33. 33.
    M.J. Schnitzer, Phys. Rev. E 48, 2553 (1993).ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    J. Tailleur, M.E. Cates, EPL 86, 60002 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    L. Angelani, A. Costanzo, R. Di Leonardo, EPL 96, 68002 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    R. Zwanzig, Nonequilibrium statistical mechanics (Oxford University Press, USA, 2001).Google Scholar
  37. 37.
    M. Paoluzzi, R. Di Leonardo, L. Angelani, to be published in Condens. Matter (2014) [arXiv:cond-mat/1401.6944].Google Scholar
  38. 38.
    O. Chepizhko, F. Peruani, Phys. Rev. Lett. 111, 160604 (2013).ADSCrossRefGoogle Scholar
  39. 39.
    P.S. Burada, B. Lindner, Phys. Rev. E 85, 032102 (2012).ADSCrossRefGoogle Scholar
  40. 40.
    N. Koumakis, A. Lepore, C. Maggi, R. Di Leonardo, Nat. Commun. 4, 2588 (2013).ADSCrossRefGoogle Scholar
  41. 41.
    P.C. Bressloff, J.M. Newby, Rev. Mod. Phys. 85, 135 (2013).ADSCrossRefGoogle Scholar
  42. 42.
    G.M. Viswanathan, M.G.E. da Luz, E.P. Raposo, H.E. Stanley, The Physics of Foraging: An Introduction to Random Searches and Biological Encounters (Cambridge University Press, Cambridge, 2011). .Google Scholar
  43. 43.
    S. Redner, P.L. Krapivsky, Am. J. Phys. 67, 1277 (1999).ADSCrossRefGoogle Scholar
  44. 44.
    A. Gabel, S.N. Majumdar, N.K. Panduranga, S. Redner, J. Stat. Mech. P05011 (2012).Google Scholar
  45. 45.
    L. Angelani, Phys. Rev. Lett. 109, 118104 (2012).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CNR-IPCF, UOS Roma c/o Dip. di Fisica Università “Sapienza”RomaItaly

Personalised recommendations