Advertisement

Tailoring the interactions between self-propelled bodies

  • Jean-Baptiste Caussin
  • Denis Bartolo
Regular Article

Abstract

We classify the interactions between self-propelled particles moving at a constant speed from symmetry considerations. We establish a systematic expansion for the two-body forces in the spirit of a multipolar expansion. This formulation makes it possible to rationalize most of the models introduced so far within a common framework. We distinguish between three classes of physical interactions: i) potential forces, ii) inelastic collisions and iii) non-reciprocal interactions involving polar or nematic alignment with an induced field. This framework provides simple design rules for the modeling and the fabrication of self-propelled bodies interacting via physical interactions. A class of possible interactions that should yield new phases of active matter is highlighted.

Graphical abstract

Keywords

Flowing Matter: Liquids and Complex Fluids 

References

  1. 1.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012).ADSCrossRefGoogle Scholar
  2. 2.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. ST 202, 1 (2012).CrossRefGoogle Scholar
  4. 4.
    T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, O. Shochet, Phys. Rev. Lett. 75, 1226 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    H. Levine, W.-J. Rappel, I. Cohen, Phys. Rev. E 63, 017101 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    I.D. Couzin, J. Krause, R. James, G.D. Ruxton, N.R. Franks, J. Theor. Biol. 218, 1 (2002).CrossRefMathSciNetGoogle Scholar
  7. 7.
    F. Peruani, A. Deutsch, M. Bär, Eur. Phys. J. ST 157, 111 (2008).CrossRefGoogle Scholar
  8. 8.
    H. Chaté, F. Ginelli, G. Grégoire, F. Peruani, F. Raynaud, Eur. Phys. J. B 64, 451 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    R. Grossmann, L. Schimansky-Geier, P. Romanczuk, New J. Phys. 15, 085014 (2013).ADSCrossRefGoogle Scholar
  10. 10.
    W.F. Paxton, S. Sundararajan, T.E. Mallouk, A. Sen, Angew. Chem., Int. ed. 45, 5420 (2006).CrossRefGoogle Scholar
  11. 11.
    I. Theurkauff, C. Cottin-Bizonne, J. Palacci, C. Ybert, L. Bocquet, Phys. Rev. Lett. 108, 268303 (2012).ADSCrossRefGoogle Scholar
  12. 12.
    J. Palacci, S. Sacanna, A.P. Steinberg, D.J. Pine, P.M. Chaikin, Science 339, 936 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    H.-R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 268302 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, D. Bartolo, Nature 503, 95 (2013).ADSCrossRefGoogle Scholar
  15. 15.
    V. Narayan, S. Ramaswamy, N. Menon, Science 317, 105 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    A. Kudrolli, G. Lumay, D. Volfson, L. Tsimring, Phys. Rev. Lett. 100, 058001 (2008).ADSCrossRefGoogle Scholar
  17. 17.
    J. Deseigne, O. Dauchot, H. Chaté, Phys. Rev. Lett. 105, 098001 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    N. Kumar, H. Soni, S. Ramaswamy, A.K. Sood, arXiv:1402.4262v1 (2014).
  19. 19.
    V. Schaller, C.A. Weber, C. Semmrich, E. Frey, A.R. Bausch, Nature 467, 73 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Sumino, K.H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa, H. Chaté, K. Oiwa, Nature 483, 448 (2012).ADSCrossRefGoogle Scholar
  21. 21.
    T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012).ADSCrossRefGoogle Scholar
  22. 22.
    P. Romanczuk, L. Schimansky-Geier, Phys. Rev. Lett. 106, 230601 (2011).ADSCrossRefGoogle Scholar
  23. 23.
    C.A. Weber, T. Hanke, J. Deseigne, S. Léonard, O. Dauchot, E. Frey, H. Chaté, Phys. Rev. Lett. 110, 208001 (2013).ADSCrossRefGoogle Scholar
  24. 24.
    S. Henkes, Y. Fily, M.C. Marchetti, Phys. Rev. E 84, 040301 (2011).ADSCrossRefGoogle Scholar
  25. 25.
    M.R. D'Orsogna, Y.-L. Chuang, A.L. Bertozzi, L.S. Chayes, Phys. Rev. Lett. 96, 104302 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    Y.-L. Chuang, M.R. D'Orsogna, D. Marthaler, A.L. Bertozzi, L.S. Chayes, Physica D 232, 33 (2007).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    T. Hanke, C. Weber, E. Frey, Phys. Rev. E 88, 052309 (2013).ADSCrossRefGoogle Scholar
  28. 28.
    E. Ferrante, A. Turgut, M. Dorigo, C. Huepe, Phys. Rev. Lett. 268302, 1 (2013).Google Scholar
  29. 29.
    D. Grossman, I.S. Aranson, E. Ben Jacob, New J. Phys. 10, 023036 (2008).ADSCrossRefGoogle Scholar
  30. 30.
    D. Saintillan, M.J. Shelley, C.R. Phys. 14, 497 (2013).ADSCrossRefGoogle Scholar
  31. 31.
    T. Brotto, J.-B. Caussin, E. Lauga, D. Bartolo, Phys. Rev. Lett. 110, 038101 (2013).ADSCrossRefGoogle Scholar
  32. 32.
    I.S. Aranson, C.R. Phys. 14, 518 (2013).ADSCrossRefGoogle Scholar
  33. 33.
    T. Bickel, G. Zecua, A. Würger, Phys. Rev. E 89, 050303 (2014).CrossRefGoogle Scholar
  34. 34.
    S. Saha, R. Golestanian, S. Ramaswamy, arXiv:1309.4947 (2013).
  35. 35.
    M.N. Popescu, M. Tasinkevych, S. Dietrich, EPL 95, 28004 (2011).ADSCrossRefGoogle Scholar
  36. 36.
    A. Lefauve, D. Saintillan, Phys. Rev. E 89, 021002 (2014).ADSCrossRefGoogle Scholar
  37. 37.
    F.G. Woodhouse, R.E. Goldstein, Proc. Natl. Acad. Sci. U.S.A. 35, 14132 (2013).ADSCrossRefGoogle Scholar
  38. 38.
    F. Farrell, M.C. Marchetti, D. Marenduzzo, J. Tailleur, Phys. Rev. Lett. 108, 1 (2012).CrossRefGoogle Scholar
  39. 39.
    E. Bertin, M. Droz, G. Grégoire, J. Phys. A 42, 445001 (2009).ADSCrossRefGoogle Scholar
  40. 40.
    G. Grégoire, H. Chaté, Phys. Rev. Lett. 92, 025702 (2004).ADSCrossRefGoogle Scholar
  41. 41.
    G.B. Jeffery, P. Roy. Soc. A-Math. Phys. 102, 161 (1922).CrossRefGoogle Scholar
  42. 42.
    D. Saintillan, M. J. Shelley, Phys. Rev. Lett. 100, 178103 (2008).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Laboratoire de Physique de l’École Normale Supérieure de LyonUniversité de LyonLyonFrance

Personalised recommendations