Advertisement

Non-Fickian diffusion and the accumulation of methane bubbles in deep-water sediments

  • D. S. GoldobinEmail author
  • N. V. Brilliantov
  • J. Levesley
  • M. A. Lovell
  • C. A. Rochelle
  • P. D. Jackson
  • A. M. Haywood
  • S. J. Hunter
  • J. G. Rees
Regular Article
Part of the following topical collections:
  1. Thermal non-equilibrium phenomena in multi-component fluids

Abstract

In the absence of fractures, methane bubbles in deep-water sediments can be immovably trapped within a porous matrix by surface tension. The dominant mechanism of transfer of gas mass therefore becomes the diffusion of gas molecules through porewater. The accurate description of this process requires non-Fickian diffusion to be accounted for, including both thermal diffusion and gravitational action. We evaluate the diffusive flux of aqueous methane considering non-Fickian diffusion and predict the existence of extensive bubble mass accumulation zones within deep-water sediments. The limitation on the hydrate deposit capacity is revealed; too weak deposits cannot reach the base of the hydrate stability zone and form any bubbly horizon.

Graphical abstract

Keywords

Topical issue: Thermal nonequilibrium phenomena in multicomponent fluids 

References

  1. 1.
    R.E. Kayen, H.J. Lee, Marine Geotechnol. 10, 125 (1991).CrossRefGoogle Scholar
  2. 2.
    M.K. Davie, B.A. Buffett, J. Geophys. Res. 106, 497 (2001).CrossRefADSGoogle Scholar
  3. 3.
    M.K. Davie, B.A. Buffett, Earth Planet. Sci. Lett. 206, 51 (2003).CrossRefADSGoogle Scholar
  4. 4.
    D. Archer, Biogeosciences 4, 521 (2007).CrossRefADSGoogle Scholar
  5. 5.
    S.J. Hunter, D.S. Goldobin, A.M. Haywood, A. Ridgwell, J.G. Rees, Earth Planet. Sci. Lett. 367, 105 (2013).CrossRefADSGoogle Scholar
  6. 6.
    D.V. Lyubimov, S. Shklyaev, T.P. Lyubimova, O. Zikanov, Phys. Fluids 21, 014105 (2009).CrossRefADSGoogle Scholar
  7. 7.
    M.A. Barry, B.P. Boudreau, B.D. Johnson, A.H. Reed, J. Geophys. Res. 115, F04029 (2010).ADSGoogle Scholar
  8. 8.
    C.K. Algar, B.P. Boudreau, M.A. Barry, J. Geophys. Res. 116, B04207 (2011).ADSGoogle Scholar
  9. 9.
    C. Soret, Arch. Sci. Phys. Natur. Genève 2, 48 (1879).Google Scholar
  10. 10.
    J. Richter, Geoderma 8, 95 (1972).CrossRefGoogle Scholar
  11. 11.
    G. Galliéro, F. Montel, Phys. Rev. E 78, 041203 (2008).CrossRefADSGoogle Scholar
  12. 12.
    M.E. Torres, K. Wallmann, A.M. Tréhu, G. Bohrmann, W.S. Borowski, H. Tomaru, Earth Planet. Sci. Lett. 226, 225 (2004).CrossRefADSGoogle Scholar
  13. 13.
    B. Buffett, D. Archer, Earth Planet. Sci. Lett. 227, 185 (2004).CrossRefADSGoogle Scholar
  14. 14.
    J.B. Klauda, S.I. Sandler, Energy Fuels 19, 459 (2005).CrossRefGoogle Scholar
  15. 15.
    R.R. Haacke, G.K. Westbrook, M.S. Riley, J. Geophys. Res. 113, B05104 (2008).ADSGoogle Scholar
  16. 16.
    S.K. Garg, J.W. Pritchett, A. Katoh, K. Baba, T. Fujii, J. Geophys. Res. 113, B01201 (2008).ADSGoogle Scholar
  17. 17.
    D.S. Goldobin, C. R. Mec. 341, 386 (2013).CrossRefADSGoogle Scholar
  18. 18.
    J.H. Donaldson, J.D. Istok, M.D. Humphrey, K.T. O'Reilly, C.A. Hawelka, D.H. Mohr, Ground Water 35, 270 (1997).CrossRefGoogle Scholar
  19. 19.
    R.A. Bernard, R.H. Wilhelm, Chem. Eng. Prog. 46, 233 (1950).Google Scholar
  20. 20.
    R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena (Wiley, 2007).Google Scholar
  21. 21.
    L. Hnedkovsky, R.H. Wood, V.Majer, J. Chem. Thermodyn. 28, 125 (1996).CrossRefGoogle Scholar
  22. 22.
    Z. Duan, S. Mao, Geochim. Cosmochim. Acta 70, 3369 (2006).CrossRefADSGoogle Scholar
  23. 23.
    R. Sun, Z. Duan, Chem. Geol. 244, 248 (2007).CrossRefGoogle Scholar
  24. 24.
    D.S. Goldobin, EPL 95, 64004 (2011).CrossRefADSGoogle Scholar
  25. 25.
    S. Abaci, J. Edwards, B. Whittaker, Mine Water Environ. 11, 11 (1992).CrossRefGoogle Scholar
  26. 26.
    W. Sachs, J. Pet. Sci. Eng. 21, 153 (1998).CrossRefGoogle Scholar
  27. 27.
    C.K. Paull, R. Matsumoto, P.J. Wallace, W.P. Dillon (Editors), Proceedings of the Ocean Drilling Program, in Scientific Results, Vol. 164 (Ocean Drilling Program, College Station, TX, 2000).Google Scholar
  28. 28.
    G. Mavko, T. Mukerji, J. Dvorkin, The Rock Physics Handbook (Cambridge University Press, 2009).Google Scholar
  29. 29.
    S. Wiegand, J. Phys.: Condens. Matter 16, R357 (2004).ADSGoogle Scholar
  30. 30.
    S.N. Semenov, EPL 90, 56002 (2010).CrossRefADSGoogle Scholar
  31. 31.
    D.S. Goldobin, N.V. Brilliantov, Phys. Rev. E 84, 056328 (2011).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • D. S. Goldobin
    • 1
    • 3
    Email author
  • N. V. Brilliantov
    • 1
  • J. Levesley
    • 1
  • M. A. Lovell
    • 2
  • C. A. Rochelle
    • 4
  • P. D. Jackson
    • 4
  • A. M. Haywood
    • 5
  • S. J. Hunter
    • 5
  • J. G. Rees
    • 4
  1. 1.Department of MathematicsUniversity of LeicesterLeicesterUK
  2. 2.Department of GeologyUniversity of LeicesterLeicesterUK
  3. 3.Institute of Continuous Media MechanicsUB RASPermRussia
  4. 4.British Geological SurveyNottinghamUK
  5. 5.School of Earth and EnvironmentUniversity of LeedsLeedsUK

Personalised recommendations