Advertisement

Controlling inertial focussing using rotational motion

  • Christopher ProhmEmail author
  • Nikolas Zöller
  • Holger Stark
Open Access
Regular Article

Abstract.

In inertial microfluidics lift forces cause a particle to migrate across streamlines to specific positions in the cross section of a microchannel. We control the rotational motion of a particle and demonstrate that this allows to manipulate the lift-force profile and thereby the particle's equilibrium positions. We perform two-dimensional simulation studies using the method of multi-particle collision dynamics. Particles with unconstrained rotational motion occupy stable equilibrium positions in both halfs of the channel while the center is unstable. When an external torque is applied to the particle, two equilibrium positions annihilate by passing a saddle-node bifurcation and only one stable fixpoint remains so that all particles move to one side of the channel. In contrast, non-rotating particles accumulate in the center and are pushed into one half of the channel when the angular velocity is fixed to a non-zero value.

Graphical abstract

Keywords

Soft Matter: Colloids and Nanoparticles 

References

  1. 1.
    D. Di Carlo, Lab Chip 9, 3038 (2009)CrossRefGoogle Scholar
  2. 2.
    J.-S. Park, S.-H. Song, H.-I. Jung, Lab Chip 9, 939 (2009)CrossRefGoogle Scholar
  3. 3.
    A.J. Mach, J.H. Kim, A. Arshi, S.C. Hur, D. Di Carlo, Lab Chip 11, 2827 (2011)CrossRefGoogle Scholar
  4. 4.
    S.C. Hur, N.K. Henderson-MacLennan, E.R. McCabe, D. Di Carlo, Lab Chip 11, 912 (2011)CrossRefGoogle Scholar
  5. 5.
    A.J. Mach, D. Di Carlo, Biotechnol. Bioeng. 107, 302 (2010)CrossRefGoogle Scholar
  6. 6.
    G. Guan, L. Wu, A.A. Bhagat, Z. Li, P.C. Chen, S. Chao, C.J. Ong, J. Han, Sci. Rep. 3, 1475 (2013)CrossRefADSGoogle Scholar
  7. 7.
    J.S. Dudani, D.R. Gossett, T. Henry, D. Di Carlo, Lab Chip 13, 3728 (2013)CrossRefGoogle Scholar
  8. 8.
    H. Amini, E. Sollier, M. Masaeli, Y. Xie, B. Ganapathysubramanian, H.A. Stone, D. Di Carlo, Nat. Commun. 4, 1826 (2013)CrossRefADSGoogle Scholar
  9. 9.
    X. Xuan, J. Zhu, C. Church, Microfluid. Nanofluid. 9, 1 (2010)CrossRefGoogle Scholar
  10. 10.
    R.W. Applegate Jr., D.N. Schafer, W. Amir, J. Squier, T. Vestad, J. Oakey, D.W. Marr, J. Opt. A - Pure Appl. Op. 9, S122 (2007)CrossRefADSGoogle Scholar
  11. 11.
    X. Wang, S. Chen, M. Kong, Z. Wang, K.D. Costa, R.A. Li, D. Sun, Lab Chip 11, 3656 (2011)CrossRefGoogle Scholar
  12. 12.
    M.S. Munson, J.M. Spotts, A. Niemistö, J. Selinummi, J.G. Kralj, M.L. Salit, A. Ozinsky, Lab Chip 10, 2402 (2010)CrossRefGoogle Scholar
  13. 13.
    M. MacDonald, G. Spalding, K. Dholakia, Nature 426, 421 (2003)CrossRefADSGoogle Scholar
  14. 14.
    D.G. Grier, Nature 424, 810 (2003)CrossRefADSGoogle Scholar
  15. 15.
    M. Padgett, R. Di Leonardo, Lab Chip 11, 1196 (2011)CrossRefGoogle Scholar
  16. 16.
    K. Neuman, T. Lionnet, J.-F. Allemand, Annu. Rev. Mater. Res. 37, 33 (2007)CrossRefADSGoogle Scholar
  17. 17.
    X. Janssen, A. Schellekens, K. Van Ommering, L. Van Ijzendoorn, M. Prins, Biosensors Bioelectron. 24, 1937 (2009)CrossRefGoogle Scholar
  18. 18.
    J. Lipfert, J.W. Kerssemakers, T. Jager, N.H. Dekker, Nat. Methods 7, 977 (2010)CrossRefGoogle Scholar
  19. 19.
    B.A. Grzybowski, H.A. Stone, G.M. Whitesides, Nature 405, 1033 (2000)CrossRefADSGoogle Scholar
  20. 20.
    B.A. Grzybowski, G.M. Whitesides, Science 296, 718 (2002)CrossRefADSGoogle Scholar
  21. 21.
    S. Bleil, D.W. Marr, C. Bechinger, Appl. Phys. Lett. 88, 263515 (2006)CrossRefADSGoogle Scholar
  22. 22.
    K. Ladavac, D. Grier, Opt. Express 12, 1144 (2004)CrossRefADSGoogle Scholar
  23. 23.
    I.O. Götze, G. Gompper, EPL 92, 64003 (2010)CrossRefADSGoogle Scholar
  24. 24.
    I.O. Götze, G. Gompper, Phys. Rev. E 84, 031404 (2011)CrossRefADSGoogle Scholar
  25. 25.
    G. Segré, A. Silberberg, Nature 189, 209 (1961)CrossRefADSGoogle Scholar
  26. 26.
    B.P. Ho, L.G. Leal, J. Fluid Mech. 65, 365 (1974)zbMATHCrossRefADSGoogle Scholar
  27. 27.
    E.S. Asmolov, J. Fluid Mech. 381, 63 (1999)zbMATHCrossRefADSGoogle Scholar
  28. 28.
    D. Di Carlo, J.F. Edd, K.J. Humphry, H.A. Stone, M. Toner, Phys. Rev. Lett. 102, 094503 (2009)CrossRefADSGoogle Scholar
  29. 29.
    J. Feng, H.H. Hu, D.D. Joseph, J. Fluid Mech. 277, 271 (1994)zbMATHCrossRefADSGoogle Scholar
  30. 30.
    B. Chun, A.J.C. Ladd, Phys. Fluids 18, 031704 (2006)CrossRefADSGoogle Scholar
  31. 31.
    C. Prohm, H. Stark, to be published in Lab Chip (2014), DOI:10.1039/C4LC00145A
  32. 32.
    C. Prohm, M. Gierlak, H. Stark, Eur. Phys. J. E 35, 1 (2012)CrossRefGoogle Scholar
  33. 33.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)CrossRefADSGoogle Scholar
  34. 34.
    G. Gompper, T. Ihle, D. Kroll, R. Winkler, in Advanced Computer Simulation Approaches for Soft Matter Sciences III, Advances in Polymer Science (Springer, Berlin, Heidelberg, 2008) pp. 1--87Google Scholar
  35. 35.
    R. Kapral, Adv. Chem. Phys. 140, 89 (2008)CrossRefGoogle Scholar
  36. 36.
    I.O. Götze, H. Noguchi, G. Gompper, Phys. Rev. E 76, 046705 (2007)CrossRefADSGoogle Scholar
  37. 37.
    H. Noguchi, G. Gompper, Phys. Rev. E 78, 016706 (2008)CrossRefADSGoogle Scholar
  38. 38.
    B.W. Silverman, Density Estimation (Chapman and Hall, 1986)Google Scholar
  39. 39.
    H. Brenner, J. Fluid Mech. 111, 197 (1981)zbMATHMathSciNetCrossRefADSGoogle Scholar
  40. 40.
    J.P. Matas, J.F. Morris, E. Guazzelli, Oil Gas Sci. Technol. 59, 59 (2004)CrossRefGoogle Scholar
  41. 41.
    A.T. Chwang, T. Wu, J. Fluid Mech 63, 607 (1974)zbMATHMathSciNetCrossRefADSGoogle Scholar
  42. 42.
    C. Prohm, F. Tröltzsch, H. Stark, Eur. Phys. J. E 36, 1 (2013)CrossRefGoogle Scholar
  43. 43.
    W. Lee, H. Amini, H.A. Stone, D. Di Carlo, Proc. Natl. Acad. Sci. U.S.A. 107, 22413 (2010)CrossRefADSGoogle Scholar
  44. 44.
    K.J. Humphry, P.M. Kulkarni, D.A. Weitz, J.F. Morris, H.A. Stone, Phys. Fluid 22, 081703 (2010)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Christopher Prohm
    • 1
    Email author
  • Nikolas Zöller
    • 1
  • Holger Stark
    • 1
  1. 1.Institute of Theoretical PhysicsTechnische Universität BerlinBerlinGermany

Personalised recommendations