Advertisement

Dynamics of falling liquid films

  • Christian Ruyer-QuilEmail author
  • Nicolas Kofman
  • Didier Chasseur
  • Sophie Mergui
Regular Article
Part of the following topical collections:
  1. Irreversible Dynamics: A topical issue dedicated to Paul Manneville

Abstract

Falling liquid films are examples of open flows which undergo a sequence of supercritical instabilities giving way to a spatio-temporal weak disorder organized around interfacial waves in interaction. The long-wave nature of the waves and the laminar state of the flow enable to derive reduced sets of equations or models that are amenable to thorough analytic investigations. This paper reviews the phenomenology of falling film flows and discusses recent low-dimensional modeling attempts. Some open questions and perspectives are also considered.

Graphical abstract

Keywords

Topical issue: Irreversible Dynamics: A topical issue dedicated to Paul Manneville 

References

  1. 1.
    A. Pumir, P. Manneville, Y. Pomeau, J. Fluid Mech. 135, 27 (1983).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    C. Ruyer-Quil, P. Manneville, Eur. Phys. J. B 6, 277 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    C. Ruyer-Quil, P. Manneville, Eur. Phys. J. B 15, 357 (2000).ADSCrossRefGoogle Scholar
  4. 4.
    C. Ruyer-Quil, P. Manneville, Phys. Fluids 14, 170 (2002).ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    C. Ruyer-Quil, P. Manneville, Phys. Rev. Lett. 93, 199401 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    C. Ruyer-Quil, P. Manneville, J. Fluid Mech. 531, 181 (2005).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    B. Scheid, C. Ruyer-Quil, P. Manneville, J. Fluid Mech. 562, 183 (2006).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    P.L. Kapitza, Wave flow of thin layers of a viscous fluid: I. free flow - II. fluid flow in the presence of continuous gas flow and heat transfer, in Collected papers of P. L. Kapitza (1965), edited by D.T. Haar (Pergamon, Oxford, 1948) pages 662--689 (Original paper in Russian: Zh. Eksp. Teor. Fiz. 18, I. 3--18, II. 19--28).Google Scholar
  9. 9.
    P.L. Kapitza, S.P. Kapitza, Wave flow of thin layers of a viscous fluid: III. experimental study of undulatory flow conditions in Collected papers of P. L. Kapitza (1965), edited by D.T. Haar (Pergamon, Oxford, 1949) pages 690--709 (Original paper in Russian: Zh. Eksp. Teor. Fiz. 19, 105--120).Google Scholar
  10. 10.
    S.V. Alekseenko, V.E. Nakoryakov, B.G. Pokusaev, Wave flow in liquid films, third ed. (Begell House, New York, 1994).Google Scholar
  11. 11.
    H.-C. Chang, M. Cheng, E.A. Demekhin, D.I. Kopelevitch, J. Fluid Mech. 270, 251 (1994).ADSzbMATHCrossRefGoogle Scholar
  12. 12.
    H.-C. Chang, E.A. Demekhin, Complex Wave Dynamics on Thin Films, edited by D. Möbius, R. Miller (Elsevier, 2002).Google Scholar
  13. 13.
    R.V. Craster, O.K. Matar, Rev. Mod. Phys. 81, 1131 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    S. Kalliadasis, C. Ruyer-Quil, B. Scheid, M.G. Velarde, Falling liquid films, Vol. 176 of Applied Mathematical Sciences, first edition, (Springer, 2012).Google Scholar
  15. 15.
    J. Liu, J.P. Gollub, Phys. Rev. Lett. 70, 2289 (1993).ADSCrossRefGoogle Scholar
  16. 16.
    J. Liu, J.P. Gollub, Phys. Fluids 6, 1702 (1994).ADSCrossRefGoogle Scholar
  17. 17.
    J. Liu, J.D. Paul, J.P. Gollub, J. Fluid Mech. 250, 69 (1993).ADSCrossRefGoogle Scholar
  18. 18.
    J. Liu, J.B. Schneider, J.P. Gollub, Phys. Fluids 7, 55 (1995).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    T.B. Benjamin, J. Fluid Mech. 10, 401 (1961).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    S.V. Alekseenko, V.Y. Nakoryakov, B.G. Pokusaev, AIChE J. 31, 1446 (1985).CrossRefGoogle Scholar
  21. 21.
    S.V. Alekseenko, V.A. Antipin, V.V. Guzanov, S.M. Kharlamov, D.M. Markovitch, Phys. Fluids 17, 121704 (2005).ADSCrossRefGoogle Scholar
  22. 22.
    C.-S. Yih, Q. Appl. Math. 12, 434 (1955).zbMATHMathSciNetGoogle Scholar
  23. 23.
    H.-C. Chang, E.A. Demekhin, D.I. Kopelevitch, J. Fluid Mech. 250, 433 (1993).ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    F. Moisy, M. Rabaud, K. Salsac, Exp. Fluids 46, 1021 (2009).CrossRefGoogle Scholar
  25. 25.
    P.J. Schmid, D.S. Henningson. Stability and Transition in Shear Flows, (Springer, Berlin, 2001).Google Scholar
  26. 26.
    A. Miyara, Int. J. Therm. Sci. 39, 1015 (2000).CrossRefGoogle Scholar
  27. 27.
    T. Nosoko, P.N. Yoshimura, T. Nagata, K. Okawa, Chem. Eng. Sci. 51, 725 (1996).CrossRefGoogle Scholar
  28. 28.
    C.D. Park, T. Nosoko, AIChE J. 49, 2715 (2003).CrossRefGoogle Scholar
  29. 29.
    L. Brevdo, P. Laure, F. Dias, T.J. Bridges, J. Fluid Mech. 396, 37 (1999).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    P. Manneville, Dissipative Structures and Weak Turbulence (Academic Press, New York, 1990).Google Scholar
  31. 31.
    S.R. Tailby, S. Portalski, Trans. Instn. Chem. Engrs. 38, 324 (1960).Google Scholar
  32. 32.
    E.A. Demekhin, E.N. Kalaidin, S. Kalliadasis, S.Y. Vlaskin, Phys. Fluids 19, 114103 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    E.A. Demekhin, E.N. Kalaidin, S. Kalliadasis, S.Y. Vlaskin, Phys. Fluids 19, 114104 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    V. Ya. Shkadov, Izv. Akad. Nauk SSSR, Mekh. Zhidk Gaza 1, 63 (1977).ADSGoogle Scholar
  35. 35.
    H.-C. Chang, Annu. Rev. Fluid Mech. 26, 103 (1994).ADSCrossRefGoogle Scholar
  36. 36.
    D.J. Benney, J. Math. Phys. 45, 150 (1966).zbMATHMathSciNetGoogle Scholar
  37. 37.
    S.P. Lin, J. Fluid Mech. 63, 417 (1974).ADSzbMATHCrossRefGoogle Scholar
  38. 38.
    C. Nakaya, Phys. Fluids A 18, 1407 (1975).ADSzbMATHCrossRefGoogle Scholar
  39. 39.
    G.J. Roskes, Phys. Fluids 13, 1440 (1970).ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    B. Gjevik, Phys. Fluids 13, 1918 (1970).ADSzbMATHCrossRefGoogle Scholar
  41. 41.
    B. Gjevik, Acta Polytech. Scand. Mech. Eng. Ser. 61, 1 (1971).Google Scholar
  42. 42.
    M.K.R. Panga, V. Balakotaiah, Phys. Rev. Lett. 90, 1 (2003).CrossRefGoogle Scholar
  43. 43.
    M.K.R. Panga, V. Balakotaiah, Phys. Rev. E 71, 036310 (2005).ADSCrossRefGoogle Scholar
  44. 44.
    G.B. Whitham. Linear and Nonlinear Waves, (John Wiley & Sons, New York, 1974).Google Scholar
  45. 45.
    B. Scheid, C. Ruyer-Quil, U. Thiele, O.A. Kabov, J.C. Legros, P. Colinet, J. Fluid Mech. 527, 303 (2005).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  46. 46.
    A.L. Bertozzi, M. Pugh, Commun. Pure Appl. Math. 51, 625 (1998).MathSciNetCrossRefGoogle Scholar
  47. 47.
    A.L. Frenkel, Europhys. Lett. 18, 583 (1992).ADSCrossRefGoogle Scholar
  48. 48.
    S. Kalliadasis, H.-C. Chang, J. Fluid Mech. 261, 135 (1994).ADSzbMATHCrossRefGoogle Scholar
  49. 49.
    H.-C. Chang, E.A. Demekhin, J. Fluid Mech. 380, 233 (1999).ADSzbMATHCrossRefGoogle Scholar
  50. 50.
    A. Oron, O. Gottlieb, J. Eng. Math. 50, 121 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  51. 51.
    T. Ooshida, Phys. Fluids 11, 3247 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  52. 52.
    M. Amaouche, A. Djema, L. Bourdache, C. R. Mec. 337, 48 (2009).ADSzbMATHCrossRefGoogle Scholar
  53. 53.
    P. Luchini, F. Charru, J. Fluid Mech. 656, 337 (2010).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  54. 54.
    P. Luchini, F. Charru, J. Fluid Mech. 665, 516 (2010).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  55. 55.
    A.J. Roberts, Phys. Lett. A 212, 63 (1996).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  56. 56.
    A.J. Roberts, Comput. Phys. Commun. 100, 215 (1997).ADSzbMATHCrossRefGoogle Scholar
  57. 57.
    J. Carr. Applications of centre manifold theory (Springer-Verlag, New York, 1981).Google Scholar
  58. 58.
    J. Guckenheimer, P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields, (Springer-Verlag, New York, 1983).Google Scholar
  59. 59.
    A.-J.-C. B. d. Saint-Venant, C. R. Acad. Sci. Paris 73, 147 (1871).zbMATHGoogle Scholar
  60. 60.
    V. Ya. Shkadov, Izv. Akad. Nauk SSSR, Mekh. Zhidk Gaza 1, 43 (1967) English translation in Fluid Dynamics.Google Scholar
  61. 61.
    T. Prokopiou, M. Cheng, H.-C. Chang, J. Fluid Mech. 222, 665 (1991).ADSzbMATHCrossRefGoogle Scholar
  62. 62.
    G.M. Sisoev, V. Ya. Shkadov, Dokl. Phys. 44, 454 (1999).ADSMathSciNetGoogle Scholar
  63. 63.
    V. Ya. Shkadov, G.M. Sisoev, Fluid Dyn. Res. 35, 357 (2004).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  64. 64.
    G.M. Sisoev, R.V. Craster, O.K. Matar, S.V. Gerasimov, Chem. Eng. Sci. 61, 7279 (2006).CrossRefGoogle Scholar
  65. 65.
    L.-Q. Yu, F.K. Wasden, A.E. Dukler, V. Balakotaiah, Phys. Fluids 7, 1886 (1995).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  66. 66.
    L.T. Nguyen, V. Balakotaiah, Phys. Fluids 12, 2236 (2000).ADSCrossRefGoogle Scholar
  67. 67.
    R.F. Dressler, Commun. Pure Appl. Math. 2, 149 (1949).zbMATHMathSciNetCrossRefGoogle Scholar
  68. 68.
    R.R. Brock, J. Hydr. Engng. 96, 2565 (1970).ADSGoogle Scholar
  69. 69.
    H.-C. Chang, E.A. Demekhin, Phys. Fluids 12, 2268 (2000).ADSMathSciNetCrossRefGoogle Scholar
  70. 70.
    Q.Q. Liu, L. Chen, J.C. Li, V.P. Singh, J. Hydrologic Engng. 10, 110 (2005).CrossRefGoogle Scholar
  71. 71.
    J.-P. Vila, A two moments closure of shallow water type for gravity driven flows, in preparation.Google Scholar
  72. 72.
    E.D. Fernández-Nieto, P. Noble, J.-P. Vila, J. Non-Newtonian Fluid Mech. 165, 712 (2010).zbMATHCrossRefGoogle Scholar
  73. 73.
    M. Boutounet, L. Chupin, P. Noble, J.-P. Vila, Commun. Math. Sci. 6, 29 (2008).zbMATHMathSciNetCrossRefGoogle Scholar
  74. 74.
    M. Boutounet, Modèles asymptotiques pour la dynamique d’un film liquide mince, PhD thesis, Insitut Supérieur de l’Aéronautique et de l’Espace (ISAE), 2011.Google Scholar
  75. 75.
    R. Usha, B. Uma, Phys. Fluids 16, 2679 (2004).ADSCrossRefGoogle Scholar
  76. 76.
    E. Novbari, A. Oron, Phys. Fluids 21, 062107 (2009).ADSCrossRefGoogle Scholar
  77. 77.
    N. Ribe, J. Fluid Mech. 433, 135 (2001).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  78. 78.
    D. Chasseur, Écoulement de films liquides sur un plan incliné: analyse des phénomènes et optimisation d’un outil de calcul. PhD thesis, Conservatoire National des Arts et Métiers, Paris, (2011).Google Scholar
  79. 79.
    S. Popinet, J. Comput. Phys. 190, 572 (2003).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  80. 80.
    S. Popinet, J. Comput. Phys. 228, 5838 (2009).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  81. 81.
    J. Tihon, K. Serifi, K. Argyiriadi, V. Bontozoglou, Exp. Fluids 41, 79 (2006).CrossRefGoogle Scholar
  82. 82.
    C. Ruyer-Quil, S. Chakraborty, B. Dandapat, J. Fluid Mech. 692, 220 (2012).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  83. 83.
    H.A. Thomas, The propagation of waves in steep prismatic conduits, in Proc. Hydraulics Conf., (University of Iowa, 1939) pp. 214--229.Google Scholar
  84. 84.
    A.J. Roberts, Z.-Q. Li, J. Fluid Mech. 553, 33 (2006).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  85. 85.
    F. Wasden, A. Duckler, AIChE J. 187, 35 (1989).Google Scholar
  86. 86.
    P.N. Yoshimura, T. Nosoko, T. Nagata, Chem. Eng. Sci. 51, 1231 (1996).CrossRefGoogle Scholar
  87. 87.
    A. Samanta, B. Goyeau, C.R. Ruyer-Quil, J. Fluid Mech. 716, 414 (2013).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  88. 88.
    S. Portalski, Indust. Engng Chem. Fund. 3, 49 (1964).CrossRefGoogle Scholar
  89. 89.
    G.F. Dietze, A. Leefken, R. Kneer, J. Fluid Mech. 595, 435 (2008).ADSzbMATHCrossRefGoogle Scholar
  90. 90.
    G.F. Dietze, F. AL-Sibai, R. Kneer, J. Fluid Mech. 637, 73 (2009).ADSzbMATHCrossRefGoogle Scholar
  91. 91.
    N.A. Malamataris, V. Balakotaiah, AIChE J. 54, 1725 (2008).CrossRefGoogle Scholar
  92. 92.
    N.A. Malamataris, M. Vlachogiannis, V. Bontozoglou, Phys. Fluids 14, 1082 (2002).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  93. 93.
    T. Kawahara, Phys. Rev. Lett. 51, 381 (1983).ADSCrossRefGoogle Scholar
  94. 94.
    T. Kawahara, S. Toh, Phys. Fluids 31, 2103 (1988).ADSMathSciNetCrossRefGoogle Scholar
  95. 95.
    S. Toh, H. Iwasaki, T. Kawahara, Phys. Rev. A 40, 5472 (1989).ADSCrossRefGoogle Scholar
  96. 96.
    H.-C. Chang, Phys. Fluids 29, 3142 (1986).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  97. 97.
    H.-C. Chang, E.A. Demekhin, D.I. Kopelevitch, Physica D 63, 299 (1993).ADSzbMATHCrossRefGoogle Scholar
  98. 98.
    H.-C. Chang, E.A. Demekhin, E. Kalaidin, SIAM J. Appl. Math. 58, 1246 (1998).zbMATHMathSciNetCrossRefGoogle Scholar
  99. 99.
    D. Tseluiko, S. Saprykin, S. Kalliadasis, Proc. Est. Acad. Sci. 59, 139 (2010).zbMATHMathSciNetCrossRefGoogle Scholar
  100. 100.
    C. Ruyer-Quil, P.M.J. Trevelyan, F. Giorgiutti-Dauphiné, C. Duprat, S. Kalliadasis, J. Fluid Mech. 603, 431 (2008).ADSzbMATHMathSciNetCrossRefGoogle Scholar
  101. 101.
    M. Pradas, D. Tseluiko, S. Kalliadasis, Phys. Fluids 23, 044104 (2011).ADSCrossRefGoogle Scholar
  102. 102.
    M. Vlachogiannis, A. Samandas, V. Leontidis, V. Bontozoglou, Phys. Fluids 22, 012106 (2010).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Christian Ruyer-Quil
    • 1
    • 2
    • 3
    Email author
  • Nicolas Kofman
    • 1
  • Didier Chasseur
    • 1
  • Sophie Mergui
    • 1
  1. 1.laboratoire FASTUPMC Université Paris 06, Université Paris-SudOrsayFrance
  2. 2.laboratoire LOCIE, Savoie TechnolacUniversité de SavoieLe Bourget du Lac CedexFrance
  3. 3.Institut Universitaire de France (IUF)ParisFrance

Personalised recommendations