Reversibility of crumpling on compressed thin sheets

Reversibility of crumpling
  • Alain PocheauEmail author
  • Benoit Roman
Regular Article
Part of the following topical collections:
  1. Irreversible Dynamics: A topical issue dedicated to Paul Manneville


Compressing thin sheets usually yields the formation of singularities which focus curvature and stretching on points or lines. In particular, following the common experience of crumpled paper where a paper sheet is crushed in a paper ball, one might guess that elastic singularities should be the rule beyond some compression level. In contrast, we show here that, somewhat surprisingly, compressing a sheet between cylinders make singularities spontaneously disappear at large compression. This “stress defocusing” phenomenon is qualitatively explained from scale-invariance and further linked to a criterion based on a balance between stretching and curvature energies on defocused states. This criterion is made quantitative using the scalings relevant to sheet elasticity and compared to experiment. These results are synthesized in a phase diagram completed with plastic transitions and buckling saturation. They provide a renewed vision of elastic singularities as a thermodynamic condensed phase where stress is focused, in competition with a regular diluted phase where stress is defocused. The physical differences between phases is emphasized by determining experimentally the mechanical response when stress is focused or defocused and by recovering the corresponding scaling laws. In this phase diagram, different compression routes may be followed by constraining differently the two principal curvatures of a sheet. As evidenced here, this may provide an efficient way of compressing a sheet that avoids the occurrence of plastic damages by inducing a spontaneous regularization of geometry and stress.

Graphical abstract


Topical issue: Irreversible Dynamics: A topical issue dedicated to Paul Manneville 


  1. 1.
    V. Pereira, A. Castro Neto, H. Liang, L. Mahadevan, Phys. Rev. Lett. 105, 156603 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    J. Genzer, J. Groenewold, Soft Matter 2, 310 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    U. Seifert, Adv. Phys. 46, 13 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    M. Alava, K. Niskanen, Rep. Prog. Phys. 69, 699 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    M. Golombek, F.S. Anderson, M.T. Zuber, J. Geophys. Res. 106, 811 (2001).Google Scholar
  6. 6.
    B. Roman, A. Pocheau, Phys. Rev. Lett. 108, 074301 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    L. Landau, E. Lifshitz, Theory of Elasticity (Elsevier, Cambridge, UK, 1986).Google Scholar
  8. 8.
    T. Witten, Rev. Mod. Phys. 79, 643 (2007).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    B. Audoly, Y. Pomeau, Elasticity and Geometry: From Hair Curls to the non-linear response of Shells (Oxford University Press, Oxford, UK, 2010).Google Scholar
  10. 10.
    A. Lobkovsky, S. Gentges, H. Li, D. Morse, T. Witten, Science 270, 1482 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    A. Lobkovsky, Phys. Rev. E 53, 3750 (1996).ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Lobkovsky, T. Witten, Phys. Rev. E 55, 1577 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    M. Ben Amar, Y. Pomeau, Proc. R. Soc. London, Ser. A 453, 729 (1997).CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    E. Cerda, L. Mahadevan, Phys. Rev. Lett. 80, 2358 (1998).ADSCrossRefGoogle Scholar
  15. 15.
    S. Chaïeb, F. Melo, J.C. Géminard, Phys. Rev. Lett. 80, 2354 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    L. Euler, Methodus Inveniendi Lineas Curvas Maximi Minimivi Propreitate Gaudentes. Additamentum I: De Curvis Elasticas (Lausanne & Geneva, 1744).Google Scholar
  17. 17.
    W.A. Oldfather, C.A. Ellis, D. Brown, Isis 20, 72 (1930).CrossRefGoogle Scholar
  18. 18.
    D.J. Struik, Lectures on Classical Differential Geometry (Addison-Wesley, Reading, MA, 1961).Google Scholar
  19. 19.
    B. Roman, A. Pocheau, Europhys. Lett. 46, 602 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    B. Roman, A. Pocheau, J. Mech. Phys. Solid 50, 2379 (2002).ADSCrossRefzbMATHGoogle Scholar
  21. 21.
    A. Pocheau, B. Roman, Physica D 192, 161 (2004).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    J. Hure, B. Roman, J. Bico, Phys. Rev. Lett. 109, 054302 (2012).ADSCrossRefGoogle Scholar
  23. 23.
    O. Kruglova, F. Brau, D. Villers, P. Damman, Phys. Rev. Lett. 107, 164303 (2011).ADSCrossRefGoogle Scholar
  24. 24.
    A. Pogorelov, Bendings of Surfaces and Stability of Shells (American Mathematical Society, Providence, 1988).Google Scholar
  25. 25.
    C. Quilliet, Eur. Phys. J. E 35, 1 (2012).CrossRefGoogle Scholar
  26. 26.
    B. Du, O.C. Tsui, Q. Zhang, T. He, Langmuir 17, 3286 (2001).CrossRefGoogle Scholar
  27. 27.
    A. Boudaoud, P. Patricio, Y. Couder, M. Ben Amar, Nature 407, 718 (2000).ADSCrossRefGoogle Scholar
  28. 28.
    B. Davidovitch, Phys. Rev. E 80, 025202 (2009).ADSCrossRefGoogle Scholar
  29. 29.
    B. Davidovitch, R.D. Schroll, D. Vella, M. Adda-Bedia, E.A. Cerda, Proc. Natl. Acad. Sci. U.S.A. 108, 18227 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    J. Huang, M. Juszkiewicz, W. de Jeu, E. Cerda, T. Emrick, N. Menon, T. Russell, Science 317, 650 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    H. Vandeparre, M. Piñeirua, F. Brau, B. Roman, J. Bico, C. Gay, W. Bao, C. Lau, P. Reis, P. Damman, Phys. Rev. Lett. 106, 224301 (2011).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Centrale Marseille, IRPHE UMR 7342Aix Marseille Université, CNRSMarseilleFrance
  2. 2.PMMH, UMR 7636 ESPCI/CNRS/UPMC (Paris 6)/Univ. Paris Diderot (Paris 7)Paris Cedex 05France

Personalised recommendations