Advertisement

Morphogenesis can be driven by properly parametrised mechanical feedback

  • L. V. BeloussovEmail author
Regular Article

Abstract

A fundamental problem of morphogenesis is whether it presents itself as a succession of links that are each driven by its own specific cause-effect relationship, or whether all of the links can be embraced by a common law that is possible to formulate in physical terms. We suggest that a common biophysical background for most, if not all, morphogenetic processes is based upon feedback between mechanical stresses (MS) that are imposed to a given part of a developing embryo by its other parts and MS that are actively generated within that part. The latter are directed toward hyper-restoration (restoration with an overshoot) of the initial MS values. We show that under mechanical constraints imposed by other parts, these tendencies drive forth development. To provide specificity for morphogenetic reactions, this feedback should be modulated by long-term parameters and/or initial conditions that are set up by genetic factors. The experimental and model data related to this concept are reviewed.

Graphical abstract

Keywords

Living systems: Multicellular Systems 

References

  1. 1.
    R.D. Mullins, Cold Spring Hrb Persp Biol 2, a003392 (2010).Google Scholar
  2. 2.
    J.C Maxwell, Matter and Motion (Dover, London, 1991).Google Scholar
  3. 3.
    A.G. Gurwitsch, Arch Entwmech Org. 51, 383 (1922).Google Scholar
  4. 4.
    A.G. Gurwitsch, A Theory of Biological Field (Sovetskaya Nauka, Moskva, 1944) (in Russian).Google Scholar
  5. 5.
    D'Arcy Thompson, On Growth and Form (Cambridge University Press, Cambridge, 1961).Google Scholar
  6. 6.
    A.I Zotin, R.S. Zotina, Phenomenological theory of development, growth and ageing (Nauka, Moskva, 1993) (in Russian).Google Scholar
  7. 7.
    S.F. Gilbert, Developmental Biology (Sunderland, MA, Sinauer Ass., 2010).Google Scholar
  8. 8.
    R Alberts, Molecular Biology of the Cell (Taylor & Francis Group, 2003).Google Scholar
  9. 9.
    J.-J. Kupiec, The Origin of Individuals (Singapore, World Scientific, 2009).Google Scholar
  10. 10.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    U.S. Schwarz, M.L. Gardel, J. Cell Sci. 125, 3051 (2012).CrossRefGoogle Scholar
  12. 12.
    L.V. Beloussov, The Dynamic Architecture of a Developing Organism (Kluwer Academic Publishers, Dordrecht, Boston, London, 1998).Google Scholar
  13. 13.
    L.V. Beloussov, Phys. Biol. 5, 015009 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    L.V. Beloussov, N.N. Luchinskaia, A.S. Ermakov, N.S. Glagoleva, Int. J. Dev Biol. 50, 113 (2006).CrossRefGoogle Scholar
  15. 15.
    E.S. Kornikova, E.G. Korvin-Pavlovskaya, L.V. Beloussov, Dev. Genes Evol. 219, 1 (2009).CrossRefGoogle Scholar
  16. 16.
    E.S. Kornikova, T.G. Troshina, S.V. Kremnyov, L.V. Beloussov, Devel Dyn. 239, 885 (2010).CrossRefGoogle Scholar
  17. 17.
    S.V. Kremnyov, T.G. Troshina, L.V. Beloussov, Mech. Devel. 129, 51 (2012).CrossRefGoogle Scholar
  18. 18.
    A.N. Mansurov, A.A. Stein, L.V. Beloussov, Biomech. Model. Mechanobiol. 11, 1123 (2012).CrossRefGoogle Scholar
  19. 19.
    W. His, Unsere Korpers Form (Engelmann, Leipzig, 1878).Google Scholar
  20. 20.
    G.H. Pollack, Cells, Gels and the Engines of Life (Ebner & Sons, Seattle, 2001).Google Scholar
  21. 21.
    H.X. Zhou, G. Rivas, A.P Minton, Annu. Rev. Biophys. 37, 375 (2008).CrossRefGoogle Scholar
  22. 22.
    R. Fernandez-Gonzalez, J.A. Zallen, Sci. Signal 2, 78 (2009).Google Scholar
  23. 23.
    G. Bao et al., Mol. Cell. Biomech. 3, 91 (2010).Google Scholar
  24. 24.
    B.D. Hoffman, C. Grashoff, M.A. Schwartz, Nature 475, 316 (2011).CrossRefGoogle Scholar
  25. 25.
    J. Howard, Annu. Rev. Biophys. 38, 217 (2009).CrossRefGoogle Scholar
  26. 26.
    J. Howard, S.W. Grill, J.S. Bois, Nat. Rev. Mol. Cell Biol. 12, 392 (2011).CrossRefGoogle Scholar
  27. 27.
    L.V. Beloussov, J.G. Dorfman, V.G. Cherdantzev, J. Embr. Exp. Morphol. 34, 559 (1975).Google Scholar
  28. 28.
    L.V. Beloussov, S.V. Saveliev, I.I. Naumidi, V.V. Novoselov, Int. Rev. Cytol. 150, 1 (1994).Google Scholar
  29. 29.
    D.P. Kiehart, C.G. Galbraith, K.A. Edwards, W.L. Rickoll, R.A. Montague, J. Cell Biol. 149, 471 (2000).CrossRefGoogle Scholar
  30. 30.
    E.V. Cherdantzeva, V.G. Cherdantzev, Int. J. Dev. Biol. 50, 157 (2006).CrossRefGoogle Scholar
  31. 31.
    Ju.A. Kraus, Int. J. Dev. Biol. 50, 267 (2006).CrossRefGoogle Scholar
  32. 32.
    R. Bellairs, D.R. Bromham, C.C. Wylie, J. Embryol. Exp. Morphol. 17, 197 (1967).Google Scholar
  33. 33.
    V.G. Cherdantzev, Int. J. Dev. Biol. 50, 169 (2006).CrossRefGoogle Scholar
  34. 34.
    N. Gjorevski, C.M. Nelson, Integr. Biol. 2, 424 (2010).CrossRefGoogle Scholar
  35. 35.
    A.Ju. Evstifeeva, S.V. Kremnyov, L.V. Beloussov, Ontogenez (Russ. J. Dev. Biol.) 41, 190 (2010).Google Scholar
  36. 36.
    G.F. Oster, G.M. Odell, Cell Motil. 4, 469 (1984).CrossRefGoogle Scholar
  37. 37.
    B.C. Goodwin, L.E.H. Trainor, J. Theor. Biol. 117, 79 (1985).CrossRefGoogle Scholar
  38. 38.
    S. Chr Chen, M. Mrksich, Sui Huang, G.M. Whitesides, D.E. Ingber, Science 276, 1425 (1997).CrossRefGoogle Scholar
  39. 39.
    L.A. Martynov, Mathematical Biology of Development edited by A.I. Zotin, E.V. Presnov (Nauka, Moskva, 1982) (in Russian).Google Scholar
  40. 40.
    S. Svetina, B. Zeks, J. Theor. Biol. 146, 115 (1990).CrossRefGoogle Scholar
  41. 41.
    P.B. Green, C.S. Steele, S.C. Rennich, Ann. Bot. 77, 515 (1996).CrossRefGoogle Scholar
  42. 42.
    G.M. Odell, G. Oster, P. Alberch, B. Burnside, Dev. Biol. 85, 446 (1981).CrossRefGoogle Scholar
  43. 43.
    A.K. Harris, D. Stopak, P. Warner, J. Embryol. Exp. Morphol. 80, 1 (1984).Google Scholar
  44. 44.
    B.N. Belintzev, L.V. Beloussov, A.G. Zaraisky, J. Theor. Biol. 129, 369 (1987).CrossRefGoogle Scholar
  45. 45.
    C.H. Waddington, Organizers and genes (Cambridge University Press, Cambridge, 1940).Google Scholar
  46. 46.
    A.M. Turing, Philos. Trans. Roy. Soc. London, Ser. B 237, 37 (1952).ADSCrossRefGoogle Scholar
  47. 47.
    L. Wolpert, Trends Genet. 12, 359 (1996).CrossRefGoogle Scholar
  48. 48.
    M. Spiegel, E.S. Spiegel, Amer. Zool. 15, 583 (1975).Google Scholar
  49. 49.
    T.G. Troshina, N.S. Glagoleva, L.V. Beloussov, L.V. Ontogenez, Russ. J. Dev. Biol. 42, 346 (2011).CrossRefGoogle Scholar
  50. 50.
    R. Keller, P. Tibbetts P., Dev. Biol. 131, 539 (1989).CrossRefGoogle Scholar
  51. 51.
    R. Keller, L. Davidson, A. Edlund, T. Elul, M. Ezin, D. Shook, P. Skoglund, Philos. Trans. R. Soc. London, Ser. B 355, 897 (2000).CrossRefGoogle Scholar
  52. 52.
    L.V. Beloussov, N.N. Luchinskaia, A.A.Stein, Dev. Genes Evol. 210, 92 (2000).CrossRefGoogle Scholar
  53. 53.
    L.V. Beloussov, V.I. Grabovsky, Comp. Methods Biomech. Biomed. Engin. 8, 381 (2005).CrossRefGoogle Scholar
  54. 54.
    L.A. Taber, Biomech. Model Mechanobiol. 7, 427 (2008).CrossRefGoogle Scholar
  55. 55.
    O. Kaverina, O. Krylyshkina, K. Beningo, K. Anderson, Yu-Li Wang, J.V. Small J., Cell Science 115, 2283 (2002).Google Scholar
  56. 56.
    M.K. Gardner, C.G. Pearson, B.L. Sprague, T.R. Zarzar, K.Bloom, E.D. Salmon, D.J. Odde, Mol. Biol. Cell. 16, 3764 (2005).CrossRefGoogle Scholar
  57. 57.
    A. Nekouzadeh, K.M. Pryse, E.L. Elson, G.M. Genin, J. Biomech. 41, 2964 (2008).CrossRefGoogle Scholar
  58. 58.
    S. Deguchi, M. Sato, Biorheology 46, 93 (2009).Google Scholar
  59. 59.
    T. Shemesh, A.D. Bershadsky, M.M. Kozlov, Biophys. J. 102, 1746 (2012).CrossRefGoogle Scholar
  60. 60.
    H.R.W. Wirtz, L.G. Dobbs, Science 298, 1266 (1990).ADSCrossRefGoogle Scholar
  61. 61.
    J. Dai, M.P. Sheetz, Cold Spring Hrb. Symp. Quant. Biol. 60, 567 (1995).CrossRefGoogle Scholar
  62. 62.
    C. Rauch, E. Farge, Biophys. J. 78, 3036 (2000).ADSCrossRefGoogle Scholar
  63. 63.
    N.C. Gauthier, M.A. Fardin, P. Roca-Cusach, M.P. Sheetz, Proc. Natl. Acad. Sci. U.S.A. 108, 14467 (2011).ADSCrossRefGoogle Scholar
  64. 64.
    O.J. Pletjushkina, A.M. Belkin O.J. Ivanova, T. Oliver, J.M. Vasiliev, K. Jacobson, Cell Adhes. Commun. 5, 121 (1998).CrossRefGoogle Scholar
  65. 65.
    D. Riveline, E. Zamir, N.Q. Balaban, U.S. Schwarz, T. Ishizaki, S. Narumiya, Z. Kam, B. Geiger, A.D. Bershadsky, J. Cell Biol. 153, 1175 (2001).CrossRefGoogle Scholar
  66. 66.
    L.D. Landau, L.M. Livshitz, Theory of Elasticity (Nauka, Moskva, 1976) (In Russian).Google Scholar
  67. 67.
    L.V. Beloussov, Ju.A. Labas, N.I. Kazakova, A.G. Zaraisky, J. Exp. Zool. 249, 258 (1989).CrossRefGoogle Scholar
  68. 68.
    L.V. Beloussov, V.I. Grabovsky, Comp. Methods Biomech. Biomed. Engin. 6, 53 (2003).CrossRefGoogle Scholar
  69. 69.
    E. Munro, B. Bowerman, Cold Spring Hrb. Persp. Biol. 1, a003400 (2009).Google Scholar
  70. 70.
    T.E. Schroeder, Ann. N.Y. Acad. Sci. 582, 78 (1990).ADSCrossRefGoogle Scholar
  71. 71.
    J.G. White, Ann. N.Y. Acad. Sci. 582, 50 (1990).ADSCrossRefGoogle Scholar
  72. 72.
    B.J. Cha, D.L. Gard, Dev. Biol. 205, 275 (1999).CrossRefGoogle Scholar
  73. 73.
    E. Farge, Curr. Biol. 13, 1365 (2003).CrossRefGoogle Scholar
  74. 74.
    R. McBeath, D.M. Pirone, C.M. Nelson, K. Bhadriraju, C.S. Chen, Dev. Cell 6, 483 (2004).CrossRefGoogle Scholar
  75. 75.
    A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Cell 126, 677 (2006).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory of Developmental Biophysics, Faculty of BiologyMoscow State UniversityMoscowRussia

Personalised recommendations