Advertisement

Biaxial coherence length in a nematic π-cell

  • R. Hamdi
  • G. Lombardo
  • M. P. de Santo
  • R. Barberi
Regular Article

Abstract

In a highly frustrated calamitic nematic phase, the strain can be relaxed by lowering the nematic order: the starting uniaxial symmetry can be broken and it can be replaced locally with transient biaxial domains. Using simple optical retardation measurements, we estimate the length scale over which the biaxial disturbance decays in space within a π-cell submitted to a weak electric field. We also characterise the transition cascade from the uniaxial splay texture to a bend texture through slow defect motion.

Graphical abstract

Keywords

Soft Matter: Liquid crystals 

References

  1. 1.
    P.J. Bos, K.R. Koehler Beran, Mol. Cryst. Liq. Cryst. 113, 329 (1984).CrossRefGoogle Scholar
  2. 2.
    J. Cheng, R.N. Thurston, J. Appl. Phys. 52, 2766 (1981).CrossRefADSGoogle Scholar
  3. 3.
    H. Ray, T. Kohki, I. Nobuyuki, K. Mitsuhiro, H. Masaki, in Alignment Technology and Applications of Liquid Crystal Devices (CRC Press, 2005), pp. 99-138.Google Scholar
  4. 4.
    E.J. Acosta, M.J. Towler, H.G. Walton, Liq. Crys. 27, 977 (2000).CrossRefGoogle Scholar
  5. 5.
    H. Nakamura, M. Noguchi, Jpn J. Appl. Phys. 39, 6368 (2000).CrossRefADSGoogle Scholar
  6. 6.
    P. Martinot-Lagarde, H. Dreyfus-Lambez, I. Dozov, Phys. Rev. E 67, 051710 (2003).CrossRefADSGoogle Scholar
  7. 7.
    R. Barberi, F. Ciuchi, G. Lombardo, R. Bartolino, G.E. Durand, Phys. Rev. Lett. 93, 137801 (2004).CrossRefADSGoogle Scholar
  8. 8.
    F.S. Yeung, Y.W. Li, H.-S. Kwok, App. Phys. Lett. 88, 041108 (2006).CrossRefADSGoogle Scholar
  9. 9.
    R. Barberi, F. Ciuchi, G.E. Durand, M. Iovane, D. Sikharulidze, A.M. Sonnet, E.G. Virga, Eur. Phys. J. E 13, 61 (2004).CrossRefGoogle Scholar
  10. 10.
    F. Ciuchi, H. Ayeb, G. Lombardo, R. Barberi, G.E. Durand, Appl. Phys. Lett. 91, 244104 (2007).CrossRefADSGoogle Scholar
  11. 11.
    G. Lombardo, H. Ayeb, R. Barberi, Phys. Rev. E 77, 051708 (2008).CrossRefADSGoogle Scholar
  12. 12.
    G. Lombardo, H. Ayeb, F. Ciuchi, M.P. De Santo, R. Barberi, R. Bartolino, E.G. Virga, G.E. Durand, Phys. Rev. E 77, 020702 (2008).CrossRefADSGoogle Scholar
  13. 13.
    H. Ayeb, G. Lombardo, F. Ciuchi, R. Hamdi, A. Gharbi, G. Durand, R. Barberi, Appl. Phys. Lett. 97, 104104 (2010).CrossRefADSGoogle Scholar
  14. 14.
    A. Amoddeo, R. Barberi, G. Lombardo, Phys. Rev. E 85, 061705 (2012).CrossRefADSGoogle Scholar
  15. 15.
    G. Lombardo, A. Amoddeo, R. Hamdi, H. Ayeb, R. Barberi, Eur. Phys. J. E 35, 32 (2012).CrossRefGoogle Scholar
  16. 16.
    I. Dozov, M. Nobili, G. Durand, Appl. Phys. Lett. 70, 1179 (1997).CrossRefADSGoogle Scholar
  17. 17.
    P. Biscari, P. Cesana, Continuum Mech. Thermodyn. 19, 285 (2007).CrossRefMATHMathSciNetADSGoogle Scholar
  18. 18.
    G. Carbone, G. Lombardo, R. Barberi, I. Muševič, U. Tkalec, Phys. Rev. Lett. 103, 167801 (2009).CrossRefADSGoogle Scholar
  19. 19.
    H. Ayeb, F. Ciuchi, G. Lombardo, R. Barberi, Mol. Cryst. Liq. Cryst. 481, 73 (2008).CrossRefGoogle Scholar
  20. 20.
    P. Biscari, G. Napoli, S. Turzi, Phys. Rev. E 74, 031708 (2006).CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    M. Ambrožič, S. Kralj, E.G. Virga, Phys. Rev. E 75, 031708 (2007).CrossRefMathSciNetADSGoogle Scholar
  22. 22.
    Y. Yi, G. Lombardo, N. Ashby, R. Barberi, J.E. Maclennan, N.A. Clark, Phys. Rev. E 79, 041701 (2009).CrossRefADSGoogle Scholar
  23. 23.
    M. Buscaglia, G. Lombardo, L. Cavalli, R. Barberi, T. Bellini, Soft Matter 6, 5434 (2010).CrossRefADSGoogle Scholar
  24. 24.
    T. Ohzono, J.-I. Fukuda, Nat. Commun. 3, 701 (2012).CrossRefADSGoogle Scholar
  25. 25.
    N. Schopohl, T.J. Sluckin, Phys. Rev. Lett 59, 2582 (1987).CrossRefADSGoogle Scholar
  26. 26.
    R. Barberi, F. Ciuchi, H. Ayeb, G. Lombardo, R. Bartolino, G.E. Durand, Phys. Rev. Lett. 96, 019802 (2006).CrossRefADSGoogle Scholar
  27. 27.
    J. Cheng, R.N. Thurston, G.D. Boyd, R.B. Meyer, Appl. Phys. Lett. 40, 1007 (1982).CrossRefADSGoogle Scholar
  28. 28.
    H.A. Van Sprang, Mol. Cryst. Liq. Cryst. 199, 19 (1991).CrossRefGoogle Scholar
  29. 29.
    P.S. Salter, G. Carbone, E.J. Botcherby, T. Wilson, S.J. Elston, E.P. Raynes, Phys. Rev. Lett. 103, 257803 (2009).CrossRefADSGoogle Scholar
  30. 30.
    J. Cheng, R.N. Thurston, D.W. Berreman, J. Appl. Phys. 52, 2756 (1981).CrossRefADSGoogle Scholar
  31. 31.
    L.M. Blinov, V.G. Chigrinov, Electro-optic effects in Liquid Crystal Materials (Springer, 1994). .Google Scholar
  32. 32.
    Y.R.T. Mrusiy, V. Reshetnyak, Sov. Phys. JETP 64, 1191 (1986).Google Scholar
  33. 33.
    K.H. Yang, C. Rosenblatt, Appl. Phys. Lett. 43, 62 (1983).CrossRefADSGoogle Scholar
  34. 34.
    A. Diaspro, Confocal and two-photon microscopy: foundations, applications, and advances, Vol. 1 (Wiley-Liss New Jersey, 2002).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Hamdi
    • 1
  • G. Lombardo
    • 2
  • M. P. de Santo
    • 1
    • 2
  • R. Barberi
    • 1
    • 2
  1. 1.Physics DepartmentUniversity of CalabriaRendeItaly
  2. 2.CNR-IPCF UOS di Cosenzac/o University of CalabriaRendeItaly

Personalised recommendations